中国生物芯片累计销售额超过3亿元

中国生物芯片产业从2000年诞生至今不断发展壮大。目前,中国生物芯片总销售额超过3亿元,中国生产的生物芯片已出口到美国、欧洲和东南亚等14个国家和地区。 中国科技部秘书长郑国安在21日举行的首届“生物芯片在医学和食品安检中的应用大会”上说,2000年以来中国生物芯片共获得20余个国家新药证书、医疗器械证书;申请国内ZL400余项、国外ZL100余项;同时,共有近400种生物芯片与相关产品问世,涉及基因、蛋白质、细胞和组织等方面。 生物技术是20世纪80年代末期在生命科学领域中迅猛发展的高新技术。指甲大小的一个生物芯片,可以实现对细胞、蛋白质、基因和其他生物成分的准确、快速、高通量的检测。这项技术在疾病预测、疾病预防、新药开发、食品安全、环境监测、农业育种乃至司法鉴定等领域都有广阔的应用前景。 中国十分重视生物芯片技术的研发和应用。1997年开始,国家陆续投资5亿元支持生物芯片研发,建立生物芯片北京国家工程研究中心(即博奥生......阅读全文

生物芯片用于基因测序

基因芯片利用固定探针与样品进行分子杂交产生的杂交图谱而排列出待测样品的序列,这种测定方法快速而具有十分诱人的前景。研究人员用含135000个寡核苷酸探针的阵列测定了全长为16.6kb的人线粒体基因组序列,准确率达99%。用含有48000个寡核苷酸的高密度微阵列分析了黑猩猩和人BRCA1基因序列差异,

生物芯片技术的简介

  目前,最成功的生物芯片形式是以基因序列为分析对象的“微阵列(microarray)”,也被称为基因芯片(Gene chip)或DNA芯片(DNA chip)。1998年6月美国宣布正式启动基因芯片计划,联合私人投资机构投入了20亿美元以上的研究经费。世界各国也开始加大投入,以基因芯片为核心的相关

什么是生物芯片呢?

简单说,生物芯片就是在一块玻璃片、硅片、尼龙膜等材料上放上生物样品,然后由一种仪器收集信号,用计算机分析数据结果。人们可能很容易把生物芯片与电子芯片联系起来。事实上,两者确有一个最基本的共同点:在微小尺寸上具有海量的数据信息。但它们是完全不同的两种东西,电子芯片上布列的是一个个半导体电子单元,而生物

生物芯片按用途分类

(1)生物电子芯片:用于生物计算机等生物电子产品的制造。(2)生物分析芯片:用于各种生物大分子、细胞、组织的操作以及生物化学反应的检测。前一类目前在技术和应用上很不成熟,一般情况下所指的生物芯片主要为生物分析芯片。

生物芯片主要特点

高通量提高实验进程,利于显示图谱的快速对照和阅读微型化减少试剂用量和反应液体积,提高样品浓度和反应速度自动化减低成本和保证质量

生物芯片技术杂交反应

该过程指将从生物样品分离到的蛋白、DNA或RNA样品与生物芯片进行反应,从固定于芯片的探针阵列得到样品的序列信息。由于玻片本身的荧光本底很低,所以可用荧光标记的方法来对生物芯片实施检测和分析,同时具有快速、精确和安全等优点。而且,还可用多个荧光素进行标记以实现一次性分析多个生物样品。玻片作为支持物还

生物芯片按用途分类

(1)生物电子芯片:用于生物计算机等生物电子产品的制造。(2)生物分析芯片:用于各种生物大分子、细胞、组织的操作以及生物化学反应的检测。

生物芯片技术点样法

点样法在多聚物的设计方面与原位合成技术相似。只是合成工作用传统的DNA、多肽合成仪或PCR扩增或体内克隆等方法完成。大量制备好的核酸探针、多肽、蛋白等生物大分子再用特殊的自动化微量点样装置将其以较高密度互不干扰地印点于经过特殊处理的玻片、尼龙膜、硝酸纤维素膜上,并使其与支持物牢固结合。支持物需预先经

生物芯片使用寿命

按照美国生物芯片制备标准,使用寿命约为10-15年。

生物芯片的技术特点

生物芯片是将生命科学研究中所涉及的不连续的分析过程(如样品制备、化学反应和分析检测),利用微电子、微机械、化学、物理技术、计算机技术在固体芯片表面构建的微流体分析单元和系统,使之连续化、集成化、微型化。

生物芯片应用领域

  1、基因表达水平的检测  用基因芯片进行的表达水平检测可自动、快速地检测出成千上万个基因的表达情况。Schena等采用拟南芥基因组内共45个基因的cDNA微阵列(其中14个为完全序列,31个为EST),检测该植物的根、叶组织内这些基因的表达水平,用不同颜色的荧光素标记逆转录产物后分别与该微阵列杂

生物芯片应用领域

最大用途在于疾病检测基因表达水平的检测 用基因芯片进行的表达水平检测可自动、快速地检测出成千上万个基因的表达情况。谢纳(M.Schena) 等用人外周血淋巴细胞的cDNA文库构建一个代表1046个基因的cDNA微阵列,来检测体外培养的T细胞对热休克反应后不同基因表达的差异,发现有5个基因在处理后存在

生物芯片的主要类型

  目前已有多种方法可以将寡核苷酸或短肽固定到固相支持物上。这些方法总体上有两种,即 原位合成( in situ synthesis )与合成点样两种。支持物有多种如玻璃片、硅片、聚丙烯膜、 硝酸纤维素膜、尼龙膜等,但需经特殊处理。作原位合成的支持物在 聚合反应前要先使其表面衍生出羟基或氨基(视所要

生物芯片与基因发现

    最新一期《Science》发表K.K.Jain的文章Biochips for Gene Spotting,全文如下:发表生物芯片是目前生物技术中主要的技术之一。研究人员从计算机技术中借用了微型化、整合、平行化处理的技术来发展在芯片上的实验室装置和处理过程。一般地,在芯片上的靶标是有序排列

生物芯片技术荧光探针

目前用荧光探针作为检测信号的仪器,主要是考虑荧光标记所要检测的DNA的效率,以及荧光探针本身的发光效率和光谱特性。PCR过程中的DNA标记1.末端标记:在引物上标记有荧光探针,在DNA扩增过程时,使新形成的DNA链末端带有荧光探针。2 .随机插入:选择四种缄机基,使其中一种或几种挂有荧光探针,在PC

生物芯片的基本步骤

  生物芯片是将生命科学研究中所涉及的不连续的分析过程(如样品制备、 化学反应和分析检测),利用微电子、微机械、化学、物理技术、计算机技术在固体芯片表面构建的微流体分析单元和系统,使之连续化、集成化、微型化。  生物芯片技术主要包括四个基本要点:芯片方阵的构建、样品的制备、生物分子反应和信号的检测。

生物芯片技术芯片分类

根据芯片上的固定的探针不同,生物芯片包括基因芯片、蛋白质芯片、细胞芯片、组织芯片,另外根据原理还有元件型微阵列芯。表达谱基因芯片是用于基因功能研究的一种基因芯片。是目前技术比较成熟,应用最广泛的一种基因芯片。

生物芯片用于疾病检测

基因表达水平的检测 用基因芯片进行的表达水平检测可自动、快速地检测出成千上万个基因的表达情况。谢纳(M.Schena) 等用人外周血淋巴细胞的cDNA文库构建一个代表1046个基因的cDNA微阵列,来检测体外培养的T细胞对热休克反应后不同基因表达的差异,发现有5个基因在处理后存在非常明显的高表达,1

生物芯片的制备过程

载体材料及要求作为载体必须是固体片状或者膜、表面带有活性基因,以便于连接并有效固定各种生物分子。目前制备芯片的固相材料有玻片、硅片、金属片、尼龙膜等。目前较为常用的支持材料是玻片,因为玻片适合多种合成方法,而且在制备芯片前对玻片的预处理也相对简单易行。载体种类玻璃片、PVDF膜、聚丙烯酰氨凝胶、聚苯

生物芯片技术的应用

生物芯片(biochip)是指采用光导原位合成或微量点样等方法,将大量生物大分子比如核酸片段、多肽分子甚至组织切片、细胞等等生物样品有序地固化于支持物(如玻片、硅片、聚丙烯酰胺凝胶、尼龙膜等载体)的表面,组成密集二维分子排列,然后与已标记的待测生物样品中靶分子杂交,通过特定的仪器比如激光共聚焦扫描或

生物芯片制备点样仪

  生物芯片制备点样仪是一种用于基础医学领域的医学科研仪器,于2007年4月3日启用。  技术指标  1、一次可放50块标准玻片或6块标准多孔板,3块样品板(96或384孔样品板)2、标准玻片最多可点探针40,000个,48个亚矩阵;3、点与点间距150μm,每个点直径为100-200μm,每个点样

生物芯片技术样品制备

RNA样品通常需要首先逆转录成cDNA并进行标记后才可进行检测。目前,由于检测灵敏度所限,尚难以普通探针对极少量的核酸分子进行杂交和检测,所以需要对样品或后续测试信号进行适当的放大。多数方法需要在标记和分析前对样品进行适当程度的扩增,例如通过PCR方法,以使样品核酸的拷贝数有所提高达到检测的灵敏度。

什么是生物芯片技术

生物芯片技术是通过缩微技术,根据分子间特异性地相互作用的原理,将生命科学领域中 不连续的分析过程集成于硅芯片或玻璃芯片表面的微型生物化学分析系统,以实现对细胞、 蛋白质、基因及其它生物组分的准确、快速、大信息量的检测。按照芯片上固化的生物材 料的不同,可以将生物芯片划分为基因芯片、蛋白质芯片、

生物芯片技术检测原理

  荧光标记和检测是利用荧光标记的DNA碱基在不同的波长下吸收和发射光。在微阵列分析中,多色荧光标记可以在一个分析中同时对二个或多个生物样品进行多重分析,多重分析能大大地增加基因表达和突变检测结果的准确性,排除芯片与芯片间的人为因素。荧光为基础的分析使得利用一些先进的数据获得技术成为可能,包括共聚焦

生物芯片技术的定义

  生物芯片(biochip)是指采用光导原位合成或微量点样等方法,将大量生物大分子比如核酸片段、多肽分子甚至组织切片、细胞等等生物样品有序地固化于支持物的表面,组成密集二维分子排列,然后与已标记的待测生物样品中靶分子杂交,通过特定的仪器对杂交信号的强度进行快速、并行、高效地检测分析,从而判断样品中

生物芯片技术的起源

生物芯片技术起源于核酸分子杂交。所谓生物芯片一般指高密度固定在互相支持介质上的生物信息分子(如基因片段、DNA片段或多肽、蛋白质、糖分子、组织等)的微阵列杂交型芯片(micro-arrays),阵列中每个分子的序列及位置都是已知的,并且是预先设定好的序列点阵。微流控芯片(microfluidic c

简述生物芯片点样仪

SM100功能生物芯片点样仪采用非接触式压电振荡技术开发,通过压电元件将电脉冲转换为压电元件的位移改变,从而使毛细管点样针喷出微小液滴,可用于nL级的液体微量点样,且毛细管点样针可单独更换,确保为不同应用领域的客户提供解决方案。    技术指标 喷头  点样方式:非接触式 驱动方式:压电振荡 点样体

生物芯片的技术细分

  一个完整的生物芯片至少要能完成生化反应和信号传感,并且把相关信号能通过某种方法传输到外界。  传感器可以说是生物芯片的核心技术,它决定了生物芯片能参与什么样的生化反应,能检测什么样的信号,这就直接决定了生物芯片能应用的领域。生物芯片的传感部分使用的器件会和传统的CMOS有所不同,例如之前我们提到

生物芯片技术的分类

生物芯片虽然只有10多年的历史,但包含的种类较多,分类方式和种类也没有完全的统一。用途分类(1)生物电子芯片:用于生物计算机等生物电子产品的制造。(2)生物分析芯片:用于各种生物大分子、细胞、组织的操作以及生物化学反应的检测。前一类目前在技术和应用上很不成熟,一般情况下所指的生物芯片主要为生物分析芯

生物芯片的检测原理

  杂交信号的检测是DNA芯片技术中的重要组成部分。以往的研究中已形成许多种探测分子杂交的方法,如荧光显微镜、隐逝波传感器、光散射表面共振、电化传感器、 化学发光、荧光各向异性等等,但并非每种方法都适用于DNA芯片。由于DNA芯片本身的结构及性质,需要确定杂交信号在芯片上的位置,尤其是大规模DNA芯