PerkinElmer推出L3D微光探测解决方案平台
PerkinElmer 针对临床诊断、生命科学和分子成像应用推出“L3D-Low Light Level Detection”微光探测解决方案平台。 德国纽伦堡 - 传感器 + 测试 2010 展会 – 第 12 展厅,展位号 503 - 专注于提高人类健康及其生存环境安全的全球领先公司 ,今天在德国纽伦堡本周举行的第 17 届年度传感器 + 测试展会上宣布首次推出适用于要求苛刻的微光探测应用的创新解决方案平台,称为“L3D-Low Light Level Detection”。 PerkinElmer 的整套 L3D 应用解决方案有助于促进人类健康和环境健康所需的多种应用的发展,包括: 、荧光和发光、 、 、 及其它研究领域和科学仪器。 PerkinElmer 不断推出的雪崩光电二极管 (APD)、单光子计数模块 (SPCM)、通道式光电倍增管 (CPM) 和硅光电倍增管 (SiPM) ......阅读全文
推动翻译分子成像边界
为了实现个体化医疗,需要对健康和疾病个体在分子层面上有全面的了解,质谱分析技术的发展,增加了我们对细胞生物学的知识。与健康细胞相比,这些技术能让我们更深入地了解临床样本中的细胞会怎样出现异常。近年来,要将这些分子特征转化至临床结果和治疗方案,了解其分子的空间特性是非常必要的,并且这一趋势越来越显
简述几种分子成像方法
分子成像检验分子成像检验是指活体内生物过程在细胞和分子水平上特征的显示,在分子水平上借助化学和生物制剂的作用以无创的方式成像的检测方式。为深入揭示疾病生理病理过程有关机制,以及对疾病和治疗进行实时、动态、细致、无创、靶向性的探测和跟踪提供了有效手段。检查前准备根据所采取方法的不同采取相应的准备措施,
遥感成像传感器衡量指标
遥感技术最基本的东西其实就是遥感图像,不管你是设计传感器,还是专注遥感的应用,都是围绕着图像来工作。 传感器是获取地面目标电磁辐射信息的装置。传感器按照不同的分类标准可分为很多类,但是任何的传感器都有四个基本部分组成--收集器、探测器、处理器和输出器。来看看衡量传感器的指标。 空
分子超快成像研究获进展-实现普适性分子自层析成像
近日,中国科学院武汉物理与数学研究所柳晓军研究小组提出基于飞秒强激光与气相分子相互作用对分子结构进行层析成像的新方案,可以避免原子微分散射截面对分子结构信息提取的影响,成功从氮气分子的光电子谱中直接读取出分子核间距信息,首次演示了分子自层析成像方案的可行性。相关成果发表在《物理评论快报》(Phy
PerkinElmer推出L3D微光探测解决方案平台
PerkinElmer 针对临床诊断、生命科学和分子成像应用推出“L3D-Low Light Level Detection”微光探测解决方案平台。 德国纽伦堡 - 传感器 + 测试 2010 展会 – 第 12 展厅,展位号 503 - 专注于提高人类健康及其生存环境安全的全球领先公
基于分子成像的肿瘤分子分型研究取得突破
恶性肿瘤是分子水平上高度异质性的疾病,传统的病理形态学诊断已不能适应肿瘤精准诊治的发展需求,急需开发分子诊断技术,从分子水平研究肿瘤发生发展的病理学机制及生物学行为。 肺癌发病率和死亡率居世界恶性肿瘤之首,且呈逐年上升趋势。肺癌具有超级异质性的特性:个体异质—不同患者表皮生长因子受体(EGF
基于分子成像的肿瘤分子分型研究取得突破
恶性肿瘤是分子水平上高度异质性的疾病,传统的病理形态学诊断已不能适应肿瘤精准诊治的发展需求,急需开发分子诊断技术,从分子水平研究肿瘤发生发展的病理学机制及生物学行为。 肺癌发病率和死亡率居世界恶性肿瘤之首,且呈逐年上升趋势。肺癌具有超级异质性的特性:个体异质—不同患者表皮生长因子受体(EG
基于分子成像的肿瘤分子分型研究取得突破
恶性肿瘤是分子水平上高度异质性的疾病,传统的病理形态学诊断已不能适应肿瘤精准诊治的发展需求,急需开发分子诊断技术,从分子水平研究肿瘤发生发展的病理学机制及生物学行为。 肺癌发病率和死亡率居世界恶性肿瘤之首,且呈逐年上升趋势。肺癌具有超级异质性的特性:个体异质—不同患者表皮生长因子受体(EG
布鲁克推出分子药物成像系统,可用于分子药物研发
在第10届国际药物代谢学会(ISSX)上,布鲁克宣布推出最新的一款分子药物成像解决方案,用于临床前期药物和代谢物的成像。 基于MALDI的组织成像技术为研究人员研究药物提供了非常强大的技术,可以准确定位分子药物和它们的代谢,或者是脂质在组织结构中活动,并且为研究生理学功能提供关键技术,这在以前
岛津通过新型-MALDITOF成像,打开生物分子成像的大门
岛津株式会社宣布推出世界上最小的MALDI-TOF成像解决方案,台式MALDI-TOF-质谱系列:用于正离子分析的MALDI-8020和具有双极性离子源的MALDI-8030。岛津台式MALDI-TOF系统的紧凑格式适用于刚开始从事生物分子成像的用户,它将易于进行的MALDI分析与极其直观的软件结合
从这9点带你全方位认识图像传感器(一)
典型图像传感器的核心是CCD单元(charge-coupled device,电荷耦合器件)或标准CMOS单元(complementary meta-oxide semiconductor,互补金属氧化物半导体)。CCD和CMOS传感器具有类似的特性,它们被广泛应用于商业摄像机上。不过,现代
新成像技术曝光组织分子结构
据美国物理学家组织网3月20日报道,最近,威斯康星大学和伊利诺斯大学共同研制出一种新型同步加速成像设备,利用比太阳光要强100万倍的激光,以前所未有的高速和高分辨率直接拍摄到材料组织的分子结构。该研究发表在《自然·方法学》网站上。 该设备名为“红外环境成像”(IRENI)仪
新型分子成像技术有助尽早检测疾病
《自然-医学》:新技术能在疾病破坏组织之前揭示其活动情况 英国牛津大学的科学家近日开发出一种新的分子标记,借助于此标记和标准成像技术,医生们能够将观测深入到分子水平,并在疾病早期就检测到它们的活动情况。该新技术主要针对多发性硬化(multiple sclerosis)而设计。相关论文发表在9月2
蛋白凝胶大分子成像仪
蛋白凝胶大分子成像仪是一种用于畜牧、兽医科学领域的分析仪器,于2017年5月8日启用。 技术指标 1系统模式 *双通道同时扫描,同时输出。 2硬件构成 *2.1光 源: 2根独立的波长特异性的激光器,激发波长分别为685nm和785nm,使用寿命为40000小时,激发强度可调。 *2.2检测
单分子荧光成像概述:TIRF和FRET
经典的生物研究技术侧重于分子和细胞集群的研究——即研究含有大量相同形态或功能的分子或细胞的活动。但是,这种方法会忽略集群中的单个分子或子群的特异性。事实上在细胞周期的不同阶段或在不同的环境中,单个分子或细胞的活动很可能与集群表现出的整体活动不同。要对单个分子或亚群的活动进行观察,必须严格控制实验条件
这种单分子成像新技术可实现纳米晶体高速成像
一种不依赖荧光发射体的单分子成像新技术可能会在纳米技术、光子学和光伏技术中找到许多应用。该技术是由巴塞罗那的研究人员开发的,其工作原理是在室温下检测单个量子点的受激发射。它的速度使得可以在整个吸收和发射周期内追踪电荷载流子的数量。单分子成像技术已广泛应用于生物学。迄今为止,它们完全基于检测被成像
纳米级量子传感器实现高清成像
原文地址:http://news.sciencenet.cn/htmlnews/2023/6/502959.shtm日本东京大学科学家最近利用六方氮化硼二维层中的硼空位,首次完成了在纳米级排列量子传感器的精细任务,从而能够检测磁场中的极小变化,实现了高分辨率磁场成像。氮化硼是一种含有氮和硼原子的薄晶
纳米级量子传感器实现高清成像
日本东京大学科学家最近利用六方氮化硼二维层中的硼空位,首次完成了在纳米级排列量子传感器的精细任务,从而能够检测磁场中的极小变化,实现了高分辨率磁场成像。氮化硼是一种含有氮和硼原子的薄晶体材料。氮化硼晶格中人工产生的自旋缺陷适合作为传感器。(a)六方氮化硼中的硼空位缺陷。空位充当用于磁场测量的原子大小
挑战高分子量蛋白——MALDI质谱分子成像技术
在对组织或生物体进行成像,分析小分子构成的时候,有一个“拦路虎”总是阻碍实验的进程,那就是多肽,这些多肽体积十分大,要想对它们进行分子成像几乎是不可能的,比如,想要研究肿瘤边缘的分子微环境,如果直接成像是不可能获得清晰图像的。来自范德堡大学的质谱方法专家Richard Caprioli博士因
核磁共振成像技术步入分子层面
美国和加拿大科学家分别采用新型核磁共振成像(MRI)技术观测到人体内的分子变化,从而大大提高了MRI扫描的速度和精度,可在未来用于更快地检测癌症等疾病。研究发表在最新一期《科学》杂志上。 两国科学家使用的MRI技术都通过操控分子的旋转来提高扫描的速度和精度,从而可以在分子层面快速地完成诸如
量子点单分子成像助力CRISPR机制研究
量子点(Quantum dots)做为无机合成的纳米材料,具有超越传统荧光染料的独特光学性质,比如荧光亮度高、无需避光、不会淬灭,是新一代的优质荧光探针。单分子成像(single-molecule imaging)技术中,将荧光探针用于单分子标记,要求荧光亮度高以满足灵敏度和分辨率的需求,同时要求观
有关MALDI质谱分子成像技术的介绍
MALDI 质谱分子成像是在专门的质谱成像软件控制下,使用一台通过测定质荷比来分析生物分子的标准分子量的质谱仪来完成的。被用来研究的组织首先经过冰冻切片来获得极薄的组织片,接着用基质封闭组织切片并将切片置入质谱仪的靶上。通过计算机屏幕观察样品,利用MALDI 系统的质谱成像软件,选择拟成像部分,
介绍光电二极管的应用
所有类型的光传感器都可以用来检测突发的光照,或者探测同一电路系统内部的发光。光电二极管常常和发光器件(通常是发光二极管)被合并在一起组成一个模块,这个模块常被称为光电耦合元件。如果这样就能通过分析接收到光照的情况来分析外部机械元件的运动情况(例如光斩波器)。光电二极管另外一个作用就是在模拟电路以
电偏置相敏成像传感器研究获进展
电偏置相敏成像传感器是一种将电化学和椭偏光学方法复合而成的表面表征手段,能够实时原位探测固液界面处发生电子交换时固相表面的变化。应用该传感器时,通常需要对界面处施加一外部电势,但是,该电势会改变固相表面的性质,进而影响传感器的响应。针对这一问题,由中国科学院力学研究所纳米生物光学课题组和葡萄牙里
手性传感器识别法鉴别手性分子
手性传感器识别法具有简单快捷、高效灵敏和选择性高的特点。电化学传感器主要通过主体选择性键合客体分子引起传感器的电信号变化而实现手性识别;荧光传感器基于对映体分子和手性选择剂形成缔合物的荧光差异来实现识别。在压电传感器中,手性选择膜镀在石英晶体上,当手性分子与手性膜发生作用时,会引起石英晶体的质量和振
光电二极管的制作材料
用于制作光电二极管的材料对于产品属性至关重要,因为只有具备充足能量光子能够激发电子穿过能隙,从而产生显著的光电流。 由于硅光电二极管具有更大的能隙,因此它在应用过程中产生的信号噪声比锗光电二极管小。 下表包括了用于制造光电二极管的常见材料:
光电二极管简介和原理
光电二极管(Photo-Diode)和普通二极管一样,也是由一个PN结组成的半导体器件,也具有单方向导电特性。但在电路中它不是作整流元件,而是把光信号转换成电信号的光电传感器件。 原理 普通二极管在反向电压作用时处于截止状态,只能流过微弱的反向电流,光电二极管在设计和制作时尽量使PN结的面积
光电二极管的检测方法
①电阻测量法 用万用表1k挡。光电二极管正向电阻约10MΩ左右。在无光照情况下,反向电阻为∞时,这管子是好的(反向电阻不是∞时说明漏电流大);有光照时,反向电阻随光照强度增加而减小,阻值可达到几kΩ或1kΩ以下,则管子是好的;若反向电阻都是∞或为零,则管子是坏的。 ②电压测量法 用万用表1
光电二极管的工作原理
光电二极管是将光信号变成电信号的半导体器件。它的核心部分也是一个PN结,和普通二极管相比,在结构上不同的是,为了便于接受入射光照,PN结面积尽量做的大一些,电极面积尽量小些,而且PN结的结深很浅,一般小于1微米。 光电二极管是在反向电压作用之下工作的。没有光照时,反向电流很小(一般小于0.1微
光电二极管性能参数
光电二极管性能参数 参数符号测试值最小典型最大单位暗电流IDVR = 10V28nA分流电阻RSHVR = 10mV100MΩ结电容CJVR = 0V, f=100kHzVR = 50V, f=100kHz60.670.7pF光谱范围λrangeSpot scan4001100nm击穿电压VBRI