发布时间:2019-01-18 10:53 原文链接: CellStemCell专家点评通过基因编辑获得优质人类血管细胞

  干细胞技术在再生医学中具有广阔的应用前景。由干细胞体外诱导分化获得的多种类型细胞移植入病灶部位后,可达到促进病损组织再生、恢复组织器官稳态和功能的目的。然而,干细胞治疗在有效性和安全性方面尚存局限,阻碍了该技术的普及。

  来自中国科学院生物物理研究所刘光慧研究组、北京大学汤富酬研究组和中国科学院动物研究所曲静研究组联合攻关,于2019年1月17日在Cell Stem Cell上发表了题为FOXO3-engineered human ESC-derived vascular cells promote vascular protection and regeneration的重要研究成果,通过靶向编辑单个长寿基因产生了世界上首例遗传增强的人类血管细胞。这些血管细胞与野生型血管细胞相比,不但能更高效地促进血管修复与再生,而且能有效抵抗细胞的致瘤性转化。遗传增强人类血管细胞的成功获得为开展安全有效的临床细胞治疗提供了重要解决途径。

图片.png

  FOXO3(Forkhead box O3 )是重要的人类长寿基因,与延缓细胞衰老、抵御外界应激和增强心血管稳态关系密切【1】。此外,FOXO3的活化可通过诱导抑癌基因表达抵抗细胞的恶性转化。研究人员历时六年的探索,最终利用第三代腺病毒载体HDAdV(helper-dependent adenovirus vector,辅助病毒依赖型腺病毒载体)介导的基因编辑技术巧妙地置换了人类胚胎干细胞中FOXO3基因的第3号外显子中的两个单核苷酸,从而实现了抑制细胞中FOXO3蛋白的磷酸化和降解,促进FOXO3在细胞核内的聚集进而激活下游靶基因的表达。

图片.png

图1. 通过基因编辑产生FOXO3功能增强的人类血管细胞,用于治疗缺血性血管病变

  当FOXO3遗传增强的人类胚胎干细胞被定向分化为血管内皮细胞(血管内膜)、血管平滑肌细胞(血管中膜)及间质细胞(血管外膜)时,这三种血管细胞均表现出比野生型细胞更强的自我更新、抵抗氧化损伤及延缓细胞衰老等能力。在机制方面,内源激活的FOXO3通过拮抗CSRP1(Cysteine -and glycine-rich protein 1)基因【2】表达介导对血管细胞衰老的抵抗作用。更为重要的是,将遗传增强的人类血管细胞靶向移植到动物模型的缺血部位,可高效促进受损血管的再生,迅速恢复缺血部位的血流,证明这些细胞具有明显优于野生型细胞的血管修复能力。

  为验证遗传增强干细胞作为移植材料的安全性,研究人员将多种致癌基因导入野生型和遗传增强的干细胞中,发现遗传增强干细胞还可以有效地抵抗癌基因诱导的细胞恶性转化。综上所述,通过改写人类基因组中的两个碱基,研究团队成功建立了可同时抵抗细胞衰老和癌变的优质人类血管细胞。

图片.png

图2. FOXO3增强型人血管细胞对细胞癌化具有强抵抗作用

  该项研究首次利用基因编辑技术实现了人类血管细胞的功能增强,揭示了长寿蛋白FOXO3维持人类血管稳态的新机制,从概念上证明了利用基因编辑策略获得优质安全人类血管细胞移植物的可行性。此外,该研究使规模化和标准化制备优质安全的人类细胞治疗材料成为可能,为未来的再生医学提供了一个具有潜力的选项,对发展更加安全有效的临床细胞治疗策略具有深远意义。

图片.png

图3. FOXO3功能增强可延缓血管衰老,增强应激抵抗并防止细胞癌变

  刘光慧团队长期致力于通过基因编辑实现人类遗传突变靶向矫正及人类细胞遗传增强的研究,并取得了一系列开拓性的研究成果。包括:利用辅助病毒依赖的腺病毒载体(HDAdV)介导的基因编辑首次实现了人类干细胞中致病基因突变的高效矫正(Cell Stem Cell 2011);首次证明了HDAdV和TALEN两种基因编辑工具的安全性,发展了安全高效的新型基因编辑工具telHDAdV(Cell Stem Cell 2014);在人类(疾病)干细胞中修复或编辑了10余种致病基因突变,并基于此建立了相关疾病研究和药物筛选平台(Cell 2016,Science 2015,Nature 2012,Nature 2011,Nat Commun 2014,Cell Stem Cell 2011,Cell Res 2016;Protein Cell 2016,Aging Cell 2017);在经典基因编辑工具TALEN基础上研发三维基因组动态成像工具TTALE(Cell Res 2017);利用CRISPR/Cas9建立了世界上首例长寿基因敲除猴模型(Nature 2018)。

  本次遗传增强人类血管细胞的获得,是继刘光慧团队创建国际首例抵抗细胞衰老和癌变的遗传增强人类干细胞(Cell Res 2017)(遗传增强:刘光慧等利用基因编辑获得“超级”干细胞【附专家点评】)之后,人类细胞功能增强策略应用于再生医学研究领域的又一次重大突破。这些研究成果均表明,人类基因组的遗传密码可以被创造性改写,并有望被安全有效地应用于疾病治疗。

  据悉,该研究工作由中科院生物物理所、中科院动物所、中科院干细胞与再生创新研究院、北京大学、首都医科大学宣武医院等机构合作完成。中科院生物物理所刘光慧研究员、北京大学汤富酬研究员以及中科院动物所曲静研究员为共同通讯作者。中科院生物物理所硕士研究生颜鹏泽和北京大学博士研究生李晴晴为并列第一作者。


相关文章

2024年中国细胞培养基行业市场现状及发展趋势分析

行业主要上市公司:奥浦迈(688293),近岸蛋白(688137),中牧实业(600195),双鹭实业(002038),通化东宝(600867),冠昊生物(300238),三生国健(688336),洁......

西北大学团队“topdown”质谱法|单日分析上千个单细胞

西北大学研究团队开发出一种基于电荷检测质谱技术的自顶向下(top-down)的单细胞蛋白质组学方法。该方法在本月发表于BioRxiv预印本上,科学家们用此方法可以每天检测1000多个单细胞中的完整蛋白......

世界首例克隆藏羊在青海诞生

近日,由西北农林科技大学团队联合青海省西宁市动物疫病预防控制中心培育的“克隆藏羊”在青海顺利出生。这是国内首次采用体细胞克隆技术对现存藏羊群体中的优良个体进行种质复原保存,并用于良种藏羊高效繁育。初生......

阻碍胶质母细胞瘤化疗反应的新障碍被发现

胶质母细胞瘤(GBM)是原发性脑和中枢神经系统(CNS)肿瘤中最具侵袭性和致命性的一种。手术切除肿瘤后,胶质母细胞瘤患者通常接受放射治疗和化疗药物替莫唑胺(TMZ)治疗。尽管患者最初对该药物反应良好,......

稀有脂肪分子帮助细胞死亡

哥伦比亚大学的科学家报告说,他们发现一种罕见的脂质是铁死亡(一种细胞死亡形式)的关键驱动因素。这些发现提供了关于细胞在铁死亡过程中如何死亡的新细节,并可以提高人们对如何在神经退行性疾病等有害发生铁死亡......

纳米材料与细胞相互作用研究获新进展

近日,山东大学晶体材料国家重点实验室教授仇吉川、刘宏与基础医学院教授郝爱军发展了一种用于改善纳米颗粒与细胞的相互作用的普适性策略。研究成果发表于《德国应用化学》。纳米材料在药物递送、组织工程、生物成像......

《细胞》编辑团队发布创刊50周年祝词

1月11日,《细胞》(Cell)编辑团队向《中国科学报》发来创刊50周年祝词,回顾创刊历程,并展望了未来的发展。以下为相关内容:1984年,《细胞》创刊。自创刊伊始,《细胞》的目标便是发表“令人兴奋的......

生物反应器国重实验室新进展!纳米机械天然杂合细胞

近日,华东理工大学生物反应器工程国家重点实验室叶邦策教授课题组在DNA传感装置的设计及生物纳米杂合系统研究中取得了重要进展。该研究构建了纳米机械-天然杂合细胞,赋予了天然细胞非传统信号分子的感知、分析......

2023获批数创新高,明年这9款疗法可能获批|细胞和基因疗法年度盘点

美国FDA曾在几年前预计,到2025年,每年将批准10-20款细胞和基因疗法。随着这一领域在全球范围内的迅猛发展,今年批准的细胞和基因疗法再创新高,不仅朝着这一目标大步迈进,也为全球病患带来了更多创新......

省重点实验室,精准“狙击”让癌细胞无处遁形

设计系列纳米酶,与光热治疗、光动力治疗、免疫治疗等结合,用于癌症、老年病等重大疾病的治疗;突破太阳能电池关键技术瓶颈,构建高能、低成本、高效率的全新有机太阳能电池体系,将有机太阳能电池效率快速提升至1......