发布时间:2013-08-15 12:43 原文链接: 祖先的经历,会遗传给你吗?

  达尔文和弗洛伊德走进酒吧。有两只醉醺醺的老鼠,一位是母亲,另一位是她的儿子,正坐在两张酒吧凳上,舔食着两个顶针帽里的杜松子酒。

  老鼠妈妈抬起头来问道:“天才们,我儿子怎么变得这么伤不起呀?”

  “遗传不好。”达尔文说。

  “没管教好。”弗洛伊德说。

  天性使然还是后天教养,生物因素还是心理因素?100多年来,对于行为如何在个体内发展和延续,甚至在代际间传递,这两种观点给出了完全相反的解释。

  然后,到了1992年,两位年轻科学家追随弗洛伊德和达尔文的脚步,走进了一家真实存在的酒吧。在喝了一些啤酒走出酒吧后,他们开始酝酿一种新的革命性综合思想,这种思想能解释生活经历如何直接影响你的基因——不仅仅是你的个人生活经历,还包括了你母亲、你祖母,甚至更远的先人的生活经历。

  这个酒吧位于马德里,当时西班牙最古老的神经生物学研究中心——卡哈尔研究所正在举办国际会议。默什•史扎夫(Moshe Szyf)是一名来自加拿大蒙特利尔麦吉尔大学的分子生物学家和遗传学家,从未学过心理学和神经病学,但他的一位同事认为他的研究可能会派上用场,说服他来参加这次会议。同样来自麦吉尔大学的神经生物学家迈克尔•米尼(Michael Meaney),也被同一位同事说服参加会议,因为那位同事认为,米尼关于母亲忽视的动物模型研究可能会从史扎夫的观点中受益。

  “我的眼前仍能浮现出那个地方——那是一个专门做比萨的转角酒吧,”米尼说,“默什是一个遵守犹太教饮食规范的人,而啤酒是符合规范的。默什可以到处喝啤酒。而我是爱尔兰人。所以我们俩挺投缘的。”

  这两人在酒吧里找到了共同话题,那就是遗传学研究的新热点。从20世纪70年代起,研究者就已经知道,在每个细胞核内紧密缠结的DNA链,需要一些额外的东西来精确地告知它们,哪个基因需要转录,是要成为心脏细胞、肝脏细胞,还是脑细胞。

  甲基(methyl group)便是额外因素之一,它是有机分子的常见组分。甲基就像食谱中的占位符,连接到每个细胞内的DNA上,使它只选择特定细胞的蛋白质所必需的菜谱 ——或者说基因。由于甲基是连接到基因上的,位于DNA双螺旋编码的旁边,却又相对于它们独立存在,因此这个领域被称为表观遗传学(epigenetics),它的英文名来自于前缀epi-(希腊语,意为“在什么之上的,外部的”)。

  最初人们认为,这些表观遗传改变仅在胚胎发育期出现。但是一些开创性的研究显示,在成年期,这些分子小玩意儿也能添加到DNA上,引起一系列细胞改变,从而导致癌症。有时 DNA甲基化是由于饮食改变引起的;有时,暴露于某些化学物下似乎是甲基化的原因。史扎夫指出,用药物修正表观遗传改变,能治愈动物的某些癌症。

  令遗传学家特别惊讶的是,他们发现,表观遗传改变能够从父母遗传给孩子,一代一代传递下去。美国杜克大学兰迪•杰托(Randy Jirtle)的一项研究指出,当雌性老鼠被喂以富含甲基的食物后,后代的皮毛色素会发生永久改变。在DNA没有任何改变的情况下,甲基能被加上或者减去 ——这种改变会像基因突变那样遗传下来。

  现在,在马德里的那家酒吧里,史扎夫和米尼提出了一个貌似不可能却恐怕有重大意义的假说:如果饮食和化学物质能改变表观遗传,那么一些特定的经历,比如童年期遭受忽视、滥用毒品,或者承受其他严重的压力,是否也能改变人脑内神经元的 DNA表观遗传呢?这个问题后来成为了行为表观遗传学这个新领域的基础。这个领域现在十分活跃,涌现出了很多研究,还提出了一些意义深远的治愈大脑的新疗法。

  根据行为表观遗传学的新见解,我们过去的创伤经历,或我们最近几代祖先过去的经历,会在我们的DNA上留下分子伤痕。一些犹太人的曾祖父母在俄国犹太人小村中被追捕;一些中国人的祖父母经历了文化大革命的蹂躏;非洲裔年轻移民的父母在大屠杀中幸存;与酗酒或者虐待孩子的父母一起长大的成年人,无论他属于哪一个民族,他们身体承载的都不仅仅是记忆。

  就像海啸退去之后沉积在精密校准的机器齿轮上的淤泥,我们的经历及我们祖先的经历是不会离去的,即使他们已经将这些经历遗忘。这些经历变成了我们的一部分,一种紧贴在我们遗传骨架上的分子遗迹。DNA 仍是一样的,但是心理和行为倾向将被遗传。你可能不止遗传了你祖母那骨节分明的膝盖,还遗传了她在初生时因为被忽视而导致的抑郁倾向。

  也可能不是这样。如果你的奶奶被好心的养父母收养,你可能会享受到她所收获的正能量,而这些正能量正是源于她养父母的爱与支持。行为表观遗传学的机制不仅仅作用于缺陷和弱点,同时也作用于力量与忍耐力。对于那些不幸有着悲惨经历或心境抑郁的祖父母的人,新出现的药物治疗不仅能恢复心情,还能改变表观遗传本身。就像奶奶留下的高档晚礼服,你可以选择穿它或者改变它。很久以来,基因组被认为是生命的蓝图,但是表观基因组是生命的“素描刻蚀”:只要你摇得够猛,就能清除家族的诅咒。


迈克尔·米尼,神经生物学家。图片来源:《发现》杂志。

,

  巫毒遗传学

  在开启这一革命的20年后,米尼坐在了自己宽大的胡桃木办公桌的后面。他的办公室位于道格拉斯研究所4层的转角处。这个研究所隶属于麦吉尔大学的精神健康分部。1月的暴风雪在办公室的大型落地窗外留下了15公分的积雪。他面容粗犷英俊,头发蓬乱花白如同滑雪者沾雪的乱发——正巧,这个周末他计划要去滑雪。地板上有一堆氦气球,干瘪的程度各不相同。其中一个气球上写着:“60岁快乐!”

  “我一直有兴趣知道,是什么使人们彼此不同,”他说,“我们的表现方式,我们的行为方式——一些人是乐观的,一些人是悲观的。是什么产生了这种差异?”

  米尼追寻着个体差异这个问题的答案。他所用的手段是,研究母老鼠的养育习惯,观察这种习惯如何对后代造成终身的影响。20世纪50年代的研究就已经发现,在出生后的前3周每天被人拨弄5到15分钟的大鼠,比起未被拨弄的同窝伙伴,长大后要更加安静,对应激环境的反应也更小。为找出这种持续性效果后面的机制,米尼和其他研究者证实,这种好处不是直接通过人为拨弄传递的。相反,这是因为拨弄会激起大鼠妈妈的“母爱” ,让它们给幼崽提供更多的舔舐和梳理,同时也会更多地实施一种被称为“弓背看护”(arched-back nursing)的行为——这种行为是指,母鼠在给幼崽喂奶时,会在身下给幼崽留出更多的空间。

  “这一切都与触觉刺激有关,”米尼说。

  他在1997年发表于《科学》杂志的那篇里程碑式的文章中指出,幼崽期接受的舔舐和梳理在自然状态下的数量差异,会直接影响到成年期包括皮质酮在内的应激激素的表达方式。幼崽时接受到的舔舐越多,长大后应激激素就越低。可以说,大鼠妈妈的舔舐就相当于一个遗传调节的开关。但这篇论文没有解释这个情况是怎么出现的。

  “到那时为止,我们所做的,只是识别出了母亲的照料对特定基因的影响,”米尼说,“但是那时我对表观遗传学知道得不多。”

  之后他遇见了史扎夫。


默什·史扎夫,分子生物学家及遗传学家。图片来源:《发现》杂志

  出生后遗传

  “我原来打算当一个牙医,”史扎夫笑着说。他有点瘦,面色苍白,有些秃顶,坐在他那忙碌的实验室后面的小办公室中。这个房间很简朴,仅有一幅照片,照片上显示着两个胚胎位于子宫当中。

  在 20世纪70年代末,由于要在耶路撒冷希伯来大学撰写关于牙医学的博士论文,史扎夫开始接近一名年轻的生物化学教授阿亥龙•拉辛(Aharon Razin)。拉辛那时刚在一些世界顶级的学术期刊上发表了自己最初的几项研究。这些研究第一次指出,基因行为可以通过被称为甲基的结构进行调节。史扎夫那时完全不知道这个学科,但是他需要一位论文导师,而拉辛正好在那儿。于是,史扎夫一下子就被甩到了表观遗传学这一热门新领域的最前沿,再也没有回头。

  在拉辛这类学者的研究问世之前,细胞内基因转录的基本故事情节是简单明了的。DNA是主要的编码者,位于每个细胞的细胞核内;RNA转录这些编码来构建细胞所需要的所有蛋白质。后来,拉辛教授的一些同事指出,甲基能连接到胞嘧啶上,这是DNA和RNA的一种化学碱基。

  正是拉辛,在与生化学家同事霍华德•塞达(Howard Cedar)的合作研究中指出,这些连接并不只是短暂的、无意义的事件。甲基可以与DNA永久结合,与DNA一起复制上百代。而且,正如任何良缘佳偶一样,甲基的连接能显著改变任何“嫁”给它们的基因,方法是抑制基因的转录——这种情形确实很像一个吃醋配偶的行为。拉辛和塞达证明,甲基会缠绕在细胞核内被称为组蛋白的分子卷轴上,将DNA链紧扣其上,从而抑制基因的转录。这种缠绕越紧密,这个基因产生蛋白就越困难。


连接在DNA链上的甲基,能够影响这个DNA的表达。图片来源:《发现》杂志

,

  想想这意味着什么吧:DNA编码本身没有突变,与它连接的甲基却导致了长期的、可遗传的基因功能改变。另一类被称为乙酰基的分子,则起着相反的作用,能将DNA链从组蛋白卷上解开缠绕,使其上的特定基因更容易被RNA转录。

  到20世纪80年代末,史扎夫去麦吉尔大学任职时,他已经成了一名表观遗传改变机制的专家。但在遇见米尼之前,他听都没听说过,这些改变会在大脑中发生,而原因仅仅是母亲的照料。

  “这种事,乍一听就像是巫毒术,”史扎夫承认,“对于一名分子生物学家,任何没有清晰分子途径的东西都不是严肃的科学。但是我们聊得越久,我就越是意识到,母亲照料很可能会导致DNA的甲基化,尽管这听起来很疯狂。因此我和迈克尔决定做点儿实验来证明它。”

  事实上,他们完成了一系列精巧的实验。在博士后研究人员的支持之下,他们开始挑选大鼠妈妈,其中一些是高度负责任的母亲,另一些是极度漫不经心的母亲。一旦幼崽长到成年,研究团队就检查它的海马区,这是大脑中调控应激反应的关键区域。他们在漫不经心的母亲的幼崽上发现,调控糖皮质激素受体产出的基因高度甲基化,这种受体能调控对应激激素的敏感度;而尽责母亲的幼崽,糖皮质激素受体基因几乎没有甲基化。

  甲基化只会把事情搞砸。受此影响的基因转录得到了“越少越好”的指令。在这种情况下,与糟糕母亲抚育相关联的甲基化,将阻止正常数量糖皮质激素受体在婴儿海马区中的转录。缺乏足够的糖皮质激素受体,导致大鼠长大会变得极度神经质。

  为了证明这个结果完全是由于母亲的行为而非基因所导致,米尼与他的同事开展了第2个实验。他们把不负责任的母鼠生产的幼崽交给负责任的母鼠,反之亦然。正如他们所预期的,由不负责任的母亲养大的大鼠,即使是由负责任的母亲所生,其海马区的糖皮质激素受体水平也比较低下,表现得容易受惊。同样的,由好妈妈养大的大鼠,即使是坏妈妈所生,在长大后也是冷静而勇敢,有着高水平的糖皮质激素受体。

  在发表他们的研究之前,米尼和史扎夫开展了第3个关键实验,希望能顶住那些不可避免会站出来质疑他们结果的怀疑者。毕竟也可以这样认为:在大鼠脑中观察到的表观遗传改变不会直接造成成体的行为改变,这两者仅仅是共同发生而已。

  为了验证这种可能性,米尼和史扎夫又选择了另外一窝由坏妈妈养大的大鼠幼崽。这一次,在通常的破坏已经完成之后,他们向大鼠的脑中注入曲古抑菌素 A(trichostatin A),这是一种可以去甲基化的药物。这些动物没有显示出任何在相同后代中经常观察到的行为缺陷,它们的大脑也没有任何表观遗传改变。

  “把药物直接注射进大脑能起作用,这个想法太疯狂了,”史扎夫说,“但是的确起作用了,就像是重启电脑一样。”

  尽管有这些看起来无可辩驳的证据,当两个人把所有东西写到论文里时,一位顶级科学期刊的审稿人却拒绝相信一切,声称以前他从来没有看到过母亲的行为会导致表观基因改变的证据。

  “他当然没见过,”史扎夫说,“我们不会费力去报道一项已经被证明的研究。”

  最后,他们的里程碑式论文——《抚育行为的表观遗传编码》,于2004年6月发表在《自然•神经科学》上。

  米尼和史扎夫证明了一些不可思议的事,它就是“出生后遗传”:基因编码虽然没有改变,但大鼠幼崽仅仅由于它们被养育的经历就获得了遗传连接物,这些表观遗传附加物(即甲基)粘附到它们的组蛋白上,就像捣出电梯门外的雨伞,把事情搞砸,并改变了大脑功能。

  该隐的印记

  母爱能使孩子的生命完全不同,这观点已经不新鲜了。但是,表观遗传改变能否代代相传,仍是一个备受争议的命题。是甲基化直接通过受精卵传递,还是每个婴儿生下来都是纯净的、没有甲基化,在出生后单纯由于父母才大量覆盖上甲基?

  来自纽约西奈山伊坎医学院的神经科学家埃里克•内斯特(Eric Nestler),多年来致力于探寻上述问题的答案。在一项研究中,他将雄性老鼠置于更大的、更富有侵略性的老鼠的恐吓之下熬了10天。实验结束时,这些被威胁的老鼠变得孤僻了。

  为了证实这些影响是否能传递到下一代,内斯特选择了另一组被恐吓的老鼠与雌鼠繁殖后代,并彻底杜绝它们与后代相见。

  尽管完全没有与它们抑郁的父亲相见,这些后代长大后也对压力过于敏感。“这些后代显然更容易发展出抑郁症状,这个效应不可忽视,”他说。

  在进一步的实验中,内斯特提取了“失败者”雄性的精子,通过体外受精使雌性怀孕。它们的后代并没有显示大多数的行为异常,暗示表观遗传传递可能不是根源。内斯特提出了替代观点,来解释这个试验结果:“雌性可能知道她是在和一个失败者交配。她知道跟她交配的是个窝囊废,因此对待幼崽的方式也完全两样。”

  尽管有了内斯特的新发现,学界的观点并没有达成一致。最新的证据发表在2013年1月25日的《科学》杂志上,暗示表观遗传改变在老鼠身上通常会被清除掉,但也不是总被清除。这种清除是不完美的,有时受影响的基因可能会被遗传给下一代,从此开始代代相传。

  下一步是什么?

  相关研究滚雪球般不断积累。一个研究方向是追踪老年失忆症的大脑神经元表观遗传改变。另一个方向则将创伤后应激障碍与编码神经营养因子(一种调控大脑中神经元生长的蛋白)基因编码的甲基化联系起来。

  如果大脑中在某些特定区域活跃的基因的表观遗传改变,真能引起我们的情绪和智力(我们冷静或恐惧的倾向、学习或遗忘的能力),那么就会产生一个问题:为什么我们不能使用某些药物,来清洗掉不想要的甲基?

  行动已经开始。大型制药公司和较小的生物技术公司都在寻找可以提高学习和记忆能力的表观遗传复合物。在今天这些精神药物都无计可施的情况下,表观遗传药物恐怕可以成功治愈抑郁症、焦虑症和创伤后应激障碍,它的魅力明眼人一望便知。

  但是,这将是一场冒险。我们如何才能确定表观遗传药物只会擦除有害的标记,而让有益的——可能是关键的——甲基不受损?我们是否要创造一种足够强大的药片,来擦除所有历史写下的表观遗传记录?如果这样的药物能够清除所有由于战争、强奸、你祖先那被遗弃和欺骗的童年在你脑中留下的表观遗传残余物,从而解放你的基因,你会愿意去服用吗?

相关文章

最大的海洋微生物基因数据库有助于药物发现

迄今对包括细菌、病毒和真菌在内的海洋微生物基因进行的最全面分析,可为研究人员发现抗生素、追踪气候变化影响和保护濒危物种奠定基础。1月16日,相关成果发表于《科学前沿》。据《自然》报道,2021年,研究......

再谱篇章!脑科学领域首座DCSLab落成

日前,华大智造宣布脑科学领域首座DCSLab在上海脑科学与类脑研究中心(以下简称“上海脑中心”)正式落成。华大智造先进的生命科技工具将全面助力上海脑中心引领神经科学基础研究,为构建以上海为核心、协同长......

全球最大古人类基因库创建,基因和疾病历史传播情况绘成

1月11日,大型国际专家团队分析了34000年前生活在西欧和亚洲的近5000名人类的骨骼和牙齿化石,创建出世界上最大的古人类基因库。通过对古人类DNA进行测序并将其与现代样本进行比较,团队绘制了基因和......

为何同性恋没有在进化中消失?张建之/宋斯亮团队揭示双性恋基因的好处

性取向(SexualOrientation),用以描述一个人的性渴望和性幻想的对象。对于多数人来说,喜欢的对象通常是异性,即异性恋。但还有一些人独立于异性恋之外,例如同性恋和双性恋。事实上,在自然界中......

从基因入手解偏头痛之忧

与高致死率的疾病相比,偏头痛似乎算不上什么大病。可它一旦发作起来,就如同《西游记》里孙悟空被施了紧箍咒一般疼痛难忍,频繁发作的偏头痛更是令人痛苦不堪。据世界卫生组织统计,全球每10人中,就有1人饱受偏......

天津工生所在新一代碱基编辑技术开发方面取得新进展

碱基编辑(baseediting,BE)作为前沿的基因组编辑技术,能够在基因组水平上实现精确、高效的单碱基编辑。该技术广泛应用于基础研究、基因治疗和细胞工厂构建等领域。常用的DNA碱基编辑器主要是通过......

基因治疗:癫痫患者的新曙光

    脑皮质局灶性畸形是由脑部区域异常发育引起的,是儿童中常见的耐药性癫痫的最常见原因之一。它通常发生在额叶,这对规划和决策至关重要。局灶性皮质发育不良癫痫与......

研究监测发现精英运动员存在心脏变化的遗传倾向

研究评估精英运动员异常心脏功能和遗传因素一项涉及澳大利亚和比利时281名精英运动员的研究发现,六分之一的运动员存在心脏测量值,通常表明心脏功能减弱。遗传分析进一步揭示,这些运动员还具有与心肌疾病相关的......

首个免疫细胞图谱,揭示人类肺部发展中免疫细胞的秘密作用

国际研究团队将先进的单细胞技术与肺部器官样体研究相结合,以绘制人类早期肺部免疫细胞的发展过程。他们的研究结果概述了这些细胞在人类肺部组织的发育过程中如何起到积极而密切的指导作用,揭示了免疫系统和呼吸系......

推动细胞和基因疗法工艺标准的发展

Polyplus,萨多利斯集团的一部分,已同意与韩国细胞和基因疗法(CGT)的CDMOMarkHerz合作,开发以降低治疗产品每剂的成本并提高质量为重点的新的CGT效率标准。团队将通过利用Polypl......