Antpedia LOGO WIKI资讯

深海冷泉水合物快速形成动力学机制获揭示

近日,国际学术期刊《海洋和石油地质学》报道了中国科学院海洋研究所在冷泉环境中水合物快速形成动力学方面的最新研究成果,研究揭示了海底冷泉环境对水合物形成的影响,并且为南海冷泉区水合物形成的动力学过程提供了新的见解。冷泉环境下水合物形成动力学的示意图采样区域图和采样照片 深海活跃冷泉区赋存大量的天然气水合物,形成了广泛分布的自生碳酸盐岩以及独特的冷泉生物群落,是一种复杂的深海极端环境,而这种复杂的环境会显著地影响水合物的形成和分解。 课题组前期在南海活跃冷泉喷口区进行的水合物原位合成实验表明,冷泉喷口喷出的气泡流可以在短短几秒内快速生成天然气水合物,而脱离冷泉原位环境条件的实验室结果表明,尽管模拟了冷泉环境的温度和压强,水合物却难以快速生成。这表明冷泉复杂的环境会对水合物的形成产生独特的影响,但是这种影响还尚不清楚。 海洋研究所研究员张鑫团队在我国南海北部台西南冷泉区通过保真取样技术获取了冷泉喷口流体、底层海水以及自生碳酸......阅读全文

细胞动力学参数检测

细胞增殖活性的检测 用增殖的细胞核抗原(PCNA)检测细胞增殖活性 用Ki-67检测细胞增殖活性 用CD71检测细胞增殖活性 用BrdU单克隆抗体检测细胞增殖活性 细胞周期素的检测

药物动力学的概念

药物动力学是一门较年轻的新兴药学与数学间的边缘科学,是近20年来才获得的迅速发展的药学新领域。药物动力学是研究药物在动物体内的含量随时间变化规律的科学,是药理学的一种。

酶动力学的概念

酶动力学是研究酶结合底物能力和催化反应速率的科学。研究者通过酶反应分析法(enzyme assay)来获得用于酶动力学分析的反应速率数据。

云动力学的定义

云动力学是研究云的热力、动力结构及其演变规律的学科,它是云和降水物理学的组成部分,同云和降水微物理学的关系十分密切。

药物动力学应用介绍

药物动力学已成为一种新的有用的工具,它在药学领域里具有广泛的应用。医学上一些重大课题,如癌症、冠心病、高血压等迄今尚未找到的疗效卓越的新药。因而,寻找新药的方式,正在逐渐从经验转向更为合理的形式。例如,通过生物化学、生物物理学、酶学、药物动力学、统计学以及各种光谱技术以发展或设计新药、新制剂、新剂型

PCR的反应动力学

  PCR的三个反应步骤反复进行,使DNA扩增量呈指数上升。反应最终的DNA扩增量可用y=(1+X)n计算。Y代表DNA片段扩增后的拷贝数,X表示平均每次的扩增效率,n代表循环次数。平均扩增效率的理论值为100%,实际反应初期,靶序列DNA片段的增加呈指数形式,随着PCR产物的逐渐积累,被扩增的DN

激酶的动力学实验

Km和Vmax的确定             实验材料 蛋白底物 试剂、试剂盒

酶促反应动力学

一、酶促反应1913年,Michaelis和Menten根据Henri等提出的酶-底物复合物学说,用简单的快速平衡或准平衡概念推导了单底物的酶促反应方程,即米-曼氏方程(Michaelis-Menten equation)。酶促反应可表示为:k1 k2 E + S ------------- ES

细胞动力学参数检测

细胞增殖活性的检测 用增殖的细胞核抗原(PCNA)检测细胞增殖活性 用Ki-67检测细胞增殖活性 用CD71检测细胞增殖活性 用BrdU单克隆抗体检测细胞增殖活性 细胞周期素的检测

什么是吸附动力学

吸附动力学(adsorption kinetic),是以研究吸附、脱附速度及各种影响因素为主要内容的分支学科。吸附、脱附速度主要由吸附剂与吸附质的相互作用及温度、压力等因素决定。吸附动力学的研究有助于探讨化学吸附和多相催化反应机理。1、吸附:当流体与多孔固体接触时, 流体中某一组分或多个组分在固体表

酶的应用--动力学

酶动力学是研究酶结合底物能力和催化反应速率的科学。研究者通过酶反应分析法(enzyme assay)来获得用于酶动力学分析的反应速率数据。1902年,维克多·亨得利提出了酶动力学的定量理论; 随后该理论得到他人证实并扩展为米氏方程。 亨利最大贡献在于其首次提出酶催化反应由两步组成:首先,底物可逆地结

酶促反应动力学

一、酶促反应1913年,Michaelis和Menten根据Henri等提出的酶-底物复合物学说,用简单的快速平衡或准平衡概念推导了单底物的酶促反应方程,即米-曼氏方程(Michaelis-Menten equation)。酶促反应可表示为:                            k

酶促反应动力学

一、酶促反应1913年,Michaelis和Menten根据Henri等提出的酶-底物复合物学说,用简单的快速平衡或准平衡概念推导了单底物的酶促反应方程,即米-曼氏方程(Michaelis-Menten equation)。酶促反应可表示为: k1                   k2  

酶促反应动力学

一、酶促反应1913年,Michaelis和Menten根据Henri等提出的酶-底物复合物学说,用简单的快速平衡或准平衡概念推导了单底物的酶促反应方程,即米-曼氏方程(Michaelis-Menten equation)。酶促反应可表示为:                            k

水杨酸钠是一级动力学还是零级动力学

零级动力学。水杨酸钠是一种有机物,是白色鳞片或粉末,无气味,久露光线中变粉红色。水杨酸钠的代谢是从一级动力学转变为零级动力学,所以是零级动力学。零级动力学指血中药物按恒定速率进行消除,消除速率与血药浓度高低无关,其血浆半衰期随起始浓度下降而缩短,不是固定值。

水杨酸钠是一级动力学还是零级动力学

零级动力学。水杨酸钠是一种有机物,是白色鳞片或粉末,无气味,久露光线中变粉红色。水杨酸钠的代谢是从一级动力学转变为零级动力学,所以是零级动力学。零级动力学指血中药物按恒定速率进行消除,消除速率与血药浓度高低无关,其血浆半衰期随起始浓度下降而缩短,不是固定值。

硫酸片剂的动力学作用

新霉素口服很少吸收(约3%),但长期口服较大剂量,肠粘膜有溃疡或炎症时仍可吸收相当量,特别在肾功能减退时血药浓度可显著增高。口服后大部分不经变化随粪便排出。

霉酚酸酯的药动力学

口服后迅速大量吸收,并代谢为活性成份 MPA 。口服平均生物利用度为静脉注射的 94%( 根据 MPA 曲线下面积 ) ,口服后在循环中测不出 MMF 。肾移植病人口服 MMF ,其吸收不受食物影响,但进食后血 MPA 峰值将降低 40% 。由于肠肝循环作用,服药后 6-12 小时将出现第二个血浆

拉西地平的药物动力学

口服肠道吸收迅速但不完全,绝对生物利用度30%~52%。血药浓度达峰时间为30~150min。血浆蛋白结合率95%。消除半衰期约为8h。只在肝脏代谢,有4个药理活性较低的代谢产物。70%的药物以代谢产物形式随粪便排出,其余代谢产物随尿排出。

酶动力学的基本介绍

研究酶催化剂参与的生物反应过程中,酶反应速率及影响酶反应速率的各种因素。它能提出底物到产物之间可能历程与机理,获取反应速率和影响此速率的诸因素,例如温度、pH、反应物系的浓度以及有关抑制剂等的关系,以满足酶反应过程开发和生物反应器设计的需要。底物浓度的影响  长期以来,人们已经知道许多化学反应的速率

可的松的药代动力学

可的松是肾上腺皮质分泌的糖皮质激素,本身无活性,需在体内代谢成氢化可的松才起作用。亦有一定程度的盐皮质激素样作用。醋酸可的松口服易从胃肠道吸收,约1h血浓达峰值。迅速在肝内代谢成有活性的氢化可的松,其血浆生物学作用的t1/2仅30min。肌注其混悬剂则吸收较口服慢得多。

某些药物代谢动力学数据

某些药物代谢动力学数据药  物生物利用度(%)尿排泄(%)血浆蛋白结合(%)清除率(ml·min-1·kg-1)分布容积(L/kg)半衰期(h)醋丁洛尔acebutolol3740266.81.22.7阿昔洛韦aciclovir15~3075153.370.692.4别嘌醇allopurinol80

非线性药代动力学

药物消除有特异性和饱和性。药物浓度低时,为一级代谢,药物浓度较高时,呈饱和状态,为零级代谢。非线性代谢的药物,其半衰期不是常数,随给药剂量的增大而增大,另外,血药浓度与给药剂量不完全成正比,较高浓度时,再给较小的剂量,也会使血药浓度有大幅度的增加,容易产生药物中毒。

钴胺素的药动力学信息

口服维生素B12在胃中与胃粘膜壁细胞分泌的内因子形成维生素B12-内因子复合物。当该复合物进入至回肠末端时与回肠粘膜细胞的微绒毛上的受体相结合,通过胞饮作用进入肠粘膜细胞,再吸收入血液。口服后8~12小时血药浓度达峰值;肌注40分钟时,约50%吸收入血液。肌注维生素B12 1mg后,血药浓度在1ng

酶促反应动力学(二)

  三、pH对反应速度的影响  酶反应介质的pH可影响酶分子,特别是活性中心上必需基团的解离程度和催化基团中质子供体或质子受体所需的离子化状态,也可影响底物和辅酶的解离程度,从而影响酶与底物的结合。只有在特定的pH条件下,酶、底物和辅酶的解离情况,最适宜于它们互相结合,并发生催化作用,使酶促反应速度

什么是尿动力学检查

  尿动力学检查是泌尿外科学的一个分支学科,它主要依据尿流体力学和电生理学的基本原理和方法,检测尿路各部压力、流率及生物电活动,从而了解尿路排送尿液的功能和机制,以及排尿功能障碍性疾病的病理生理学变化。全面的尿动力学检查,是直观量化尿路功能较为理想的方法。

酶促反应动力学(三)

   五、抑制剂对反应速度的影响  凡能使酶的活性下降而不引起酶蛋白变性的物质称做酶的抑制剂(inhibitor)。使酶变性失活(称为酶的钝化)的因素如强酸、强碱等,不属于抑制剂。通常抑制作用分为可逆性抑制和不可逆性抑制两类。  (一)不可逆性抑制作用(irreversible inhibition

米氏动力学的概述

中文名称米氏动力学英文名称Michaelis-Menten kinetics定  义可以用米氏方程表达的酶促反应动力学。如用反应速度作为底物浓度的函数作图时,得到典型的双曲线图。应用学科生物化学与分子生物学(一级学科),酶(二级学科)

吸附动力学怎么做

吸附动力学主要是研究一些表面能比较大的物质(比如活性炭)的吸附速率的影响因素,比如温度,反应条件等等的作用。至于方程式,因为有太多,没法一一列举,而且符号的意义不看书不可能理解,建议还是买本书看。 补充:吸附等温线是热力学的,平衡时间和速率是动力学的,热力学主要是研究吸附可行性的。

泼尼松的药代动力学

口服后吸收迅速而完全,生物半衰期约60min,在体内可与皮质激素转运蛋白结合转运至全身。泼尼松本身无生物学活性,需在肝脏内转化成泼尼松龙而发挥作用。体内分布以肝脏含量最高,血浆次之,脑脊液、胸腹水中也有一定含量,而肾和脾中较少。代谢后由尿中排出。泼尼松在肝内将11-酮基还原为11-羟基而显药理作用。