Antpedia LOGO WIKI资讯

Nature开创性成果:信号激活,三步走

当动物和植物受到如细菌攻击、气味和寒冷等影响时,钙离子会流入细胞。钙向细胞提供信号告知其细胞外正在发生什么,然而由于高浓度的钙对细胞是有毒的,它必须被再度快速泵出。来自哥本哈根大学和奥尔胡斯大学丹麦国家研究基金PUMPkin中心的研究人员现在证明细胞外膜上的钙泵非常精确地调整了泵速来适应钙浓度。这些研究结果发表在著名的《自然》(Nature)杂志上。 钙泵定位在人类、动物与植物的细胞膜上,来自奥尔胡斯大学和哥本哈根大学的研究人员现在提供了关于钙泵调控细胞内钙量机制的新信息。细胞内的钙量对于细胞的健康和生存至关重要。 “结果表明钙泵可以精确测量细胞的钙含量,并根据这一信息调整它的速度。这可以防止细胞质中的钙离子浓度达到损害细胞的临界浓度。当钙浓度较低时钙泵处于无活性状态,而当钙浓度增高时它就会被逐步激活,”博士后研究人员Henning Tidow和Lisbeth Rosager Poulsen说。 研究人......阅读全文

Cell:离子通道的“阴阳调控系统”

  来自约翰霍普金斯大学的研究人员报道称,发现一种常见蛋白质在控制离子通道的开关上起着与以往认为的完全不同的作用。  钠离子通道和钙离子通道是细胞上非常关键的门户,允许钠离子和钙离子进入细胞。许多重要的生命过程都依赖于正确的钠离子和钙离子浓度,例如健康大脑中的信息交流和心脏收缩。以及许多其他的过程。

Nature子刊:科学家解析钙离子通道的调控

  Johns Hopkins大学的科学家们,解析了机体中游离钙(存在于骨以外的钙)的调控机制,这一研究可以帮助人们开发新药物,治疗包括帕金森症在内的多种神经学疾病。文章发表在本周的Nature Chemical Biology杂志上。   游离钙离子携带的电信号“对于机体功能非常重要,”

Cell解决离子通道的重要争议

  钠离子通道和钙离子通道是细胞上非常关键的门户,允许钠离子和钙离子进入细胞。许多重要的生命过程都依赖于正确的钠离子和钙离子浓度,例如健康大脑中的信息交流和心脏收缩。日前科学家们发现,细胞的钠离子通道和钙离子通道采用相同的方式,对离子的流入量进行控制。这项发表在Cell杂志上的成果,将有助于人们开发

同一课题组连发Cell、Nature文章探究钙流机制

  来自美国天普大学医学院和宾夕法尼亚大学的一个科学家团队朝着解答一个数十年的谜题即调控线粒体钙离子流入的必要机制迈出了重要的两步。研究成果分别发布在近期的Cell和Nature Cell Biology杂志上。   在第一项研究中,研究人员证实线粒体蛋白MICU1被用于在正常条件下建立适当的

Inscopix在猕猴大脑的背外侧实现头戴式显微钙成像

  Inscopix系列的大脑超微钙成像系统一般用在啮齿类动物身上的居多,因为设备体积小,重量轻,且在实验时动物可以自由活动而成像质量不受影响,因此受到了很多神经科学研究者的青睐。   但在最近的一篇来自Inscopix公司和美国德克萨斯大学奥斯汀分校的研究人员在bioRxiv上发表的文章则描

光遗传学突破:用光提高记忆力

  随着一个新的植物-人混合蛋白分子(称为OptoSTIM1)的产生,迅速发展的光遗传学领域又获得了一个突破性的进展。最近,由韩国先进科技学院(KAIST)副教授、韩国基础科学院(IBS)认知和社会性中心的Won Do Heo带领的一个研究小组,与Yong-Mahn Han教授、Daesoon Ki

Cell:线粒体上的安全阀

  合成细胞能源ATP是绝大多数细胞的基础,了解线粒体合成ATP的机制将有助于治疗癌症、心血管疾病、神经退行性疾病以及多种罕见线粒体疾病。   两年前,美国宾州大学佩雷尔曼医学院生理学教授Kevin Foskett及其同事发现了控制ATP的基本生物学过程,即细胞其他区域与线粒体间不断的钙离子往

合肥研究院在STIM1蛋白研究中取得进展

  STIM1是免疫细胞中一种重要的内质网钙离子感受器,在机体对抗病原体过程中,STIM1蛋白感受到细胞内的钙离子变化,启动免疫细胞的开关,在免疫功能中起至关重要的作用。近日,中国科学院合肥物质科学研究院强磁场科学中心王俊峰课题组与德州农工大学周育斌课题组、北京师范大学王友军课题组合作在STIM1蛋

美国科学家找到一种控制带电分子的方法——量子逻辑

   美国国家标准技术研究院(NIST)的研究小组最近宣布解决了一个棘手的科学难题,即如何控制单个带电分子或分子离子的量子特性。关键是:利用拟用于未来量子计算机运算的类似“量子逻辑”操作。新技术像激光冷却和其它技术控制原子一样有效控制分子,具有广泛的应用潜力。原子的量子控制将彻底改变原子物理学,引领

院士伉俪Cell深度解析离子通道

  来自加州大学旧金山分校,霍德华休斯医学院等处的研究人员利用TMEM16F敲除小鼠模型,发现了细胞质膜上出现磷脂紊乱的一种新机制,磷脂紊乱是血小板凝固过程中血小板激活的一个关键前步骤,相关成果公布在Cell杂志上,在网络版Cell杂志上还可以观看到对文章几位作者的专访视频。   领导这一研究的是

Cell 钙离子通道蛋白竟然是甲流病毒感染细胞的关键受体

  经过10余年的研究,一个研究团队终于发现了增强甲型流感病毒感染的关键受体分子,为开发抗甲型流感病毒新药提供了新的靶点。  图片来源:Fujioka Y. et al., Cell Host  当病毒颗粒粘附在宿主细胞表面分子上时,这个细胞就开始被感染。病毒颗粒随后会劫持细胞成分进入细胞内部并复制

钙离子通道蛋白竟然是甲流病毒感染细胞的关键受体

经过10余年的研究,一个研究团队终于发现了增强甲型流感病毒感染的关键受体分子,为开发抗甲型流感病毒新药提供了新的靶点。当病毒颗粒粘附在宿主细胞表面分子上时,这个细胞就开始被感染。病毒颗粒随后会劫持细胞成分进入细胞内部并复制,从而造成感染。尽管研究了十余年,但是甲型流感病毒(IAV)结合的受体分子仍然

李向东博士PNAS解析肌球蛋白的关键新机制

  来自中科院动物研究所的研究人员获得了包含多个结构域的肌球蛋白5a的关键结晶结构,并进行了结构比对,从而为理解钙调素与肌球蛋白5a的作用机制提供了新观点。  这一研究成果公布在《美国国家自然科学院院刊》(PNAS)杂志上。文章的通讯作者是中国科学院动物研究所李向东博士,主要从事细胞内物质转运的分子

中科院发表离子通道研究新成果

  双受精是开花植物特有的一种繁殖方式。在授粉过程中,花粉管通过接收和应答胚珠分泌的多种引诱物质将一对精细胞送入胚珠。其中一个精细胞与卵细胞融合产生合子,另一个与中央细胞融合产生胚乳。  已知花粉管导向需要花粉管顶部的钙离子梯度,而钙离子通道是调控钙离子梯度的核心,因此钙离子通道是花粉管导向的关键元

揭示钙调蛋白调节RyR2受体机制

  心肌收缩是由钙离子流入细胞质触发的,最初是由Cav1.2介导的细胞外环境中的钙离子流入触发的,随后是由兰尼碱受体2(ryanodine receptor 2, RyR2)介导的肌浆网钙库中的钙离子流入触发的。兰尼碱受体是已知最大的离子通道,由分子量大于2兆道尔顿(MDa)的同源四聚体组成。80%

引发肺癌的生物学机理被揭示

  韩国首尔大学一项最新研究,从细胞水平阐明了吸烟和长期精神压力引发肺癌的生物学机理。研究证实,不仅香烟烟气能够引发肺癌,长期精神压力也能引发实验鼠肺组织的上皮细胞产生癌变。在动物实验中,一些治疗高血压的药物能够显著降低肺癌发生率。  该研究发现,香烟燃烧物中的致癌成分以及精神压力造成激素类物质高表

清华大学教授eLife新发现:抑制钙离子通道的新方式

  生物通报道:来自清华大学医学院生物医学工程系的研究人员首次揭示了一种抑制L型电压门控钙离子通道的新型方式:CMI即“碳末端介导抑制”,该项研究利用组成性及急性诱发的域间聚合,阐明了通道蛋白碳末端的三个关键域之间的协同法则,论证了CMI对通道门控和钙内流的抑制作用,分析了CMI机制与钙通道核心门控

JBC:胰腺癌的致命弱点

  胰腺癌是一种预后差的侵袭性癌症,癌细胞对化疗和放疗高度抵抗,目前治疗这一疾病的方法很有限。曼彻斯特大学的科学家们发现了胰腺癌的致命弱点,对其加以利用将能更有效的治疗胰腺癌患者,文章发表在本月的Journal of Biological Chemistry杂志上。   领导这项研究的Dr J

多糖裂解酶高温适应性研究获进展

  温度是进化的重要驱动力之一。随着温度的升高,酶的催化活性会相应地提高,但酶与底物之间的亲和力会下降。  金属离子能够增强金属酶的活性、稳定性和底物亲和力,但是金属离子螯合氨基酸在高温适应性过程的作用尚不明确。近日,中国科学院青岛生物能源与过程研究所微生物资源团队针对多糖裂解酶高温适应性的相关研究

2018年心脑血管年度盘点

  2018年即将过去,年末为大家献上生物谷本年度心脑血管疾病专题盘点,希望读者朋友们能够喜欢。1. Science:重磅!亲联蛋白2切割竟可阻止心力衰竭产生doi:10.1126/science.aan3303.  美国爱荷华大学心脏研究员Long-Sheng Song博士及其团队在之前的研究中已

选择性杀死癌细胞的新策略

  本周在《Cell Reports》杂志发表的一项研究中,宾夕法尼亚大学佩雷尔曼医学院的研究人员指出,抑制钙离子到细胞动力室——线粒体的转移,可特异性地对癌细胞产生毒性。  本文资深作者、生理学系主任Kevin Foskett博士指出:“这表明,线粒体的钙依赖性,是癌细胞的一种新特征。这种对‘钙离

著名华人科学家Cell子刊细胞研究新技术

  由麻省理工学院的神经科学家领导的一个研究小组开发出了一种新方法来监控脑细胞是如何相互协调控制如启动动作或探测气味等特异行为的。这项新的成像技术是基于检测神经元中的钙离子,可以帮助他们绘制出执行这些功能的脑回路,并提供关于自闭症、强迫症和其他精神疾病起因的新认识。相关论文发表在10月18日的《神经

龚梁伟《自然》子刊文章神经学重要发现

来自美国康奈尔大学的研究人员通过在微观尺度上分享神经递质如何在细胞间传递,发现之前被认为存在于这个过程中的电流实际上并不存在。这项研究的论文发表在7月22日的《自然·细胞生物学》杂志的网络版上。文章的作者是华裔学者龚梁伟(Liang-Wei Gong)和Manfred Lindau。 康奈尔大学应

《Nature》子刊精彩选读

神经递质如何在细胞间传递 来自美国康奈尔大学的研究人员通过在微观尺度上分享神经递质如何在细胞间传递,发现之前被认为存在于这个过程中的电流实际上并不存在。这项研究的论文发表在7月22日的《自然·细胞生物学》杂志的网络版上。文章的作者是华裔学者龚梁伟(Liang-Wei Gong)和Manfred

PNAS:一种心脏病疗法受到质疑

  研究人员很早就有充分的理由相信,阻断进入心脏和脑细胞线粒体的钙离子流,是防止心脏病发作和中风所致损伤的一种方法。但是最近,美国约翰霍普金斯大学的科学家们,在对心脏细胞缺乏关键钙离子通道的转基因小鼠进行研究后,似乎对这一理论提出了质疑。相关研究结果发表在本周的《美国国家科学院院刊》(PNAS)。延

神经所研究发现海马神经元树突发育调控新机制

  7月4日,《神经科学杂志》(Journal of Neuroscience)发表了中科院上海生命科学研究院神经所王以政研究组题为“经典型瞬时电压受体通道5通过a亚型钙调蛋白激酶2介导神经营养因子3对大鼠海马神经元树突生长的调控作用”的研究论文。该论文报道了神经营养因子3 (Neurotr

Nature:揭示出人上皮细胞钙离子通道TRPV6的三维结构

  在一项新的研究中,来自美国哥伦比亚大学医学中心的研究人员首次获得一种能够让上皮细胞吸收钙离子的膜孔的详细结构图片。这一发现可能加快开发校正与乳腺癌、子宫内膜癌、前列腺癌和结肠癌存在关联的钙离子摄取异常的药物。相关研究结果于2017年12月20日在线发表在Nature期刊上,论文标题为“Openi

男女通用避孕药有戏 发现黄体酮激活的人精子受体

  在一项新的研究中,来自美国加州大学伯克利分校的研究人员发现一种开关,该开关触发精子使用强力踹击(power kick)刺入人卵子中,并让它受精。它揭示出男性不育症的一种可能来源,而且也提供一种用于开发可在男女中都使用的避孕药的潜在靶标。相关研究结果于2016年3月17日发表在Science期刊上

试管婴儿的前世今生(下)

  上述种种技术并未给IVF的成功率带来显著改善,而可供胚胎筛选的时间却不多。胚胎在第五天后就要准备在子宫内着床,需进行植入或冷冻。绝大多数现有的筛选方法能够在第三天前做出评估,但有些也会拖到第五天或第六天。研究者们担心胚胎在体外培养过久,会使其基因组更容易受到环境的表观遗传学影响,因此尽量减少胚胎

Nature子刊:令人忘记疼痛的钙

  如果你不小心碰到了滚烫的炉子,立即的反应就是把手移开。虽然目前科学家们已经了解了在这种疼痛刺激过程中感知和应答的基本神经环路,但是其中具体的分子成员,还有待进一步探索。  来自杜克大学的研究人员近期取得了一项令人惊讶的发现,他们解析了线虫疼痛神经应答过程中的一种关键分子,并建立了这种分子的结构模