Antpedia LOGO WIKI资讯

激光雷达系统的基本原理

基本原理LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIght Detection And Ranging - LIDAR。激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在......阅读全文

激光雷达系统的介绍

激光雷达LiDAR(LightLaser Detection and Ranging),是激光探测及测距系统的简称。用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物 。由发射机 、天线 、接收机 、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴

激光雷达系统的主要途径

主要途径激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用

激光雷达系统的技术发展

历史沿革自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确

激光雷达系统的基本原理

基本原理LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DE

激光雷达系统的主要用途

主要用途直升机障碍物规避激光雷达目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、

LiBackpack DG50背包激光雷达扫描系统

  LiBackpack DG50背包激光雷达扫描系统是LiBackpackD50产品系列的GPS版本,在水平和垂直两个方向分别设置激光雷达传感器,同时配置高精度GNSS设备,结合同步定位与制图构建(SLAM)技术,无论扫描环境中是否存在GNSS信息,均可获取扫描范围内的高精度三维点云数据。可用于电

基于激光雷达的人机交互地面系统

本发明公开了一种基于激光雷达的人机交互地面系统,包括至少两个激光雷达探测装置、控制主机以及显示屏;所述至少两个激光雷达探测装置连接所述控制主机;所述显示屏为安装在地面上的LED显示屏或者投影仪将显示内容投射到地面上;其中所述激光雷达探测装置形成与地面平行的放射状激光扫描面,检测所述扫描面上的触摸动作

利用激光雷达LiDAR植物表型3D成像系统

口的不断增长给当今世界的粮食安全带来了挑战。基因改造工具为快速开展新作物鉴定和开发研究开辟了一个新时代。然而,植物表型分析技术的瓶颈限制了基因-表型发育的一致性,因为表型是鉴定潜在作物以提高产量和抵抗不断变化的环境的关键。在利用现有传感器和技术的同时,已经进行了"高通量"植物表型分析的各种尝试。然而

单光子激光雷达与线性固态激光雷达

上图是丰田于 2013 年开发的基于 SiSPAD (硅单光子)的激光雷达原型。水平角分辨率高达 0.05 度,水平 FOV 为 170 度,垂直 FOV 较差,仅为 4.5 度。采用了少见了 870 纳米激光,脉冲带宽为 4 纳秒,每秒高达 8 亿 TOF,云点数为 326400,云点密度大约是

固态激光雷达和机械激光雷达的区别

机械激光雷达带有控制激光发射角度的旋转部件,而固态激光雷达则无需机械旋转部件,主要依靠电子部件来控制激光发射角度。机械激光雷达主要由光电二极管、MEMS反射镜、激光发射接受装置等组成,其中机械旋转部件是指可360°控制激光发射角度的MEMS发射镜。固态激光雷达通过光学相控阵列、光子集成电路以及远场辐