科学家绘制人类单细胞染色质可及性图谱

在人类细胞中,总长约2米的基因组DNA通过与组蛋白缠绕形成核小体,并经过螺旋折叠等方式盘绕形成染色体进而团聚于直径10微米的细胞核中。在细胞内的DNA需要进行转录等活动的时候,DNA才会从组蛋白中释放出来,裸露出需要与转录因子结合的位点从而便于转录,染色质的这种特性叫做染色质可及性,暴露的区域被称为“开放染色质”。作为转录调控的核心区域,顺式作用元件附近的染色质通常具有较高的可及性,利用全基因组染色质可及性检测技术可鉴定出潜在的顺式作用元件。 近日,发表在《Cell》上的一项题为“A single-cell atlas of chromatin accessibility in the human genome”的研究中,来自美国加州大学圣地亚哥分校的研究团队利用单细胞测序技术在30个人类组织中分析了约60万个细胞,并通过与之前数据的集成分析识别了222个细胞亚型并注释了近120万个顺式作用元件,绘制了目前最大规模的人类单......阅读全文

染色质蛋白非组蛋白α螺旋转角α螺旋模式介绍

  这是最早在原核基因的激活蛋白和阻抑物中发现的。迄今已经在百种以上原核细胞和真核生物中发现这种最简单、最普遍的DNA结合蛋白的结构模式。这种蛋白与DNA结合时,形成对称的同型二聚体(symmetric homodimer)结构模式。构成同型二聚体的每个单体由20个氨基酸的小肽组成α螺旋-转角-α螺

染色质非组蛋白螺旋环螺旋结构模式

  HLH这一结构模式广泛存在于动、植物DNA结合蛋白中。HLH由40~50个氨基酸组成两个两性α螺旋,两个α螺旋中间被一个或几个β转角组成的环区所分开。每个α螺旋由15~16个氨基酸残基组成,并含有几个保守的氨基酸残基。具有疏水面和亲水面的两性α螺旋有助于二聚体的形成。α螺旋邻近的肽链 N 端也有

细胞化学词汇​RNA折叠

中文名称:RNA折叠英文名称:RNA folding定  义:新合成的或变性的RNA转变为特定的、成熟的三维结构构象的过程。应用学科:生物化学与分子生物学(一级学科),核酸与基因(二级学科)

细胞化学基础β折叠链

在β折叠中,两条以上氨基酸链(肽链),或同一条肽链之间的不同部分形成平行或反平行排列,成为“股”。

Cell:绘制人类单细胞染色质可及性图谱

  在人类细胞中,总长约2米的基因组DNA通过与组蛋白缠绕形成核小体,并经过螺旋折叠等方式盘绕形成染色体进而团聚于直径10微米的细胞核中。在细胞内的DNA需要进行转录等活动的时候,DNA才会从组蛋白中释放出来,裸露出需要与转录因子结合的位点从而便于转录,染色质的这种特性叫做染色质可及性,暴露的区域被

科学家绘制人类单细胞染色质可及性图谱

  在人类细胞中,总长约2米的基因组DNA通过与组蛋白缠绕形成核小体,并经过螺旋折叠等方式盘绕形成染色体进而团聚于直径10微米的细胞核中。在细胞内的DNA需要进行转录等活动的时候,DNA才会从组蛋白中释放出来,裸露出需要与转录因子结合的位点从而便于转录,染色质的这种特性叫做染色质可及性,暴露的区域被

科学家绘制人类单细胞染色质可及性图谱

  在人类细胞中,总长约2米的基因组DNA通过与组蛋白缠绕形成核小体,并经过螺旋折叠等方式盘绕形成染色体进而团聚于直径10微米的细胞核中。在细胞内的DNA需要进行转录等活动的时候,DNA才会从组蛋白中释放出来,裸露出需要与转录因子结合的位点从而便于转录,染色质的这种特性叫做染色质可及性,暴露的区域被

科学家绘制人类单细胞染色质可及性图谱

  在人类细胞中,总长约2米的基因组DNA通过与组蛋白缠绕形成核小体,并经过螺旋折叠等方式盘绕形成染色体进而团聚于直径10微米的细胞核中。在细胞内的DNA需要进行转录等活动的时候,DNA才会从组蛋白中释放出来,裸露出需要与转录因子结合的位点从而便于转录,染色质的这种特性叫做染色质可及性,暴露的区域被

细胞化学基础β折叠链结构

肽平面之间呈手风琴状折叠,股与股之间会通过氢键固定,但氢键主要在股间而不是股内。氨基酸残基的R侧链分布在片层的上下。β折叠层并不是平的,因为侧链的存在使得它看上去像手风琴一样波纹起伏。(英语pleated)这样每一股会更紧密排列,氢键更容易建立。氢键的距离为7埃。在蛋白质结构中β折叠通常会用箭头表示

细胞化学基础β折叠链作用

能形成β折叠的氨基酸残基一般不大,而且不带同种电荷,这样有利于多肽链的伸展,如甘氨酸、丙氨酸在β折叠中出现的几率最高。免疫球蛋白有大量的β折叠层。另一种常见的蛋白质模序是α螺旋和三种不同的β转角。不属于一个模序的蛋白质一级结构部分被称之为不规则螺旋。这些部分对蛋白质的空间构象非常重要。

染色质的组装模型介绍

人的每个体细胞所含DNA约6×109bp分布在46条染色体中,总长达2米,平均每条染色体DNA分子长约5厘米,而细胞核直径只有5~8微米,这就意味着从染色质DNA组装成染色体要压缩近万倍,相当于一个网球内包含有2千米长的细线。 多级螺旋模型由DNA与组蛋白组装成核小体,在组蛋白H1的介导下核小体彼此

nature:3D图像首次揭示细胞中DNA的折叠特征

  在最近一项研究中,科学家们首次通过模拟哺乳动物单个细胞基因组的物理结构,给我们展示了关于DNA在细胞中包装的独特视角。  通过这项新的技术,科学家们能够理解细胞中染色体的组合方式,以及决定细胞活化或者不活化的分子基础。  目前该技术仅仅在小鼠的细胞上进行了试验,不过它能够清楚地帮助我们理解动物生

人类发育中肝脏的细胞图谱揭秘人类胎儿肝脏造血

  在一项新的研究中,英国研究人员在世界上首次构建出人类发育中肝脏的细胞图谱,它提供了关于胎儿中血液和免疫系统如何产生的重要见解。这种图谱描绘了在妊娠的头三个月和第二个三个月之间的发育中肝脏的细胞景观变化,包括来自肝脏的干细胞如何播种到其他组织,以支持生长所需的高氧气需求。相关研究结果近期发表在Na

染色质组装的多级螺旋模型介绍

  由DNA与组蛋白组装成核小体,在组蛋白H1的介导下核小体彼此连接形成直径约10纳米的核小体串珠结构,这是染色质组装的一级结构。不过在细胞中,染色质很少以这种伸展的串珠状形式存在。当细胞核经温和处理后,在电镜下往往会看到直径为30纳米的染色质纤维。在有组蛋白H1存在的情况下,由直径10纳米的核小体

PNAS:新探针量化细胞内折叠和错误折叠蛋白水平

  美国Scripps研究所(TSRI)的科学家发明了一种小分子折叠探针,可在不同条件下量化细胞内正常折叠的功能性蛋白,以及疾病相关的错误折叠目的蛋白。   科学家们长期以来都需要更好的工具在细胞内进行这种测量,因为蛋白质错误折叠是组织损伤的一个主要原因。以过多蛋白错误折叠为特征的疾病,折磨着全球

细胞化学基础α螺旋

α-螺旋(α-helix)是蛋白质二级结构的主要形式之一。指多肽链主链围绕中心轴呈有规律的螺旋式上升,每3.6 个氨基酸残基螺旋上升一圈,向上平移0.54nm,故螺距为0.54nm,两个氨基酸残基之间的距离为0.15nm。螺旋的方向为右手螺旋。氨基酸侧链R基团伸向螺旋外侧,每个肽键的肽键的羰基氧和第

研究揭示人类早期胚胎组蛋白修饰重编程

  2019年7月4日,郑州大学孙莹璞课题组与清华大学颉伟课题组在Science上发表研究长文Resetting histone modifications during human parental-to-zygotic transition,揭示了人类早期发育过程中组蛋白修饰的重编程过程。表观遗

非组蛋白的特性

①酸碱性:组蛋白是碱性的,而非组蛋白则大多是酸性的。②多样性:非组蛋白占染色质蛋白的60%~70%,不同组织细胞中其种类和数量都不相同,代谢周转快。包括多种参与核酸代谢与修饰的酶类如DNA聚合酶和RNA聚合酶、HGM蛋白(high mobility group protein)、染色体支架蛋白、肌动

简述染色质蛋白非组蛋白的特性

  ①酸碱性:组蛋白是碱性的,而非组蛋白则大多是酸性的。  ②多样性:非组蛋白占染色质蛋白的60%~70%,不同组织细胞中其种类和数量都不相同,代谢周转快。包括多种参与核酸代谢与修饰的酶类如DNA聚合酶和RNA聚合酶、HGM蛋白(high mobility group protein)、染色体支架蛋

我国科学家揭示人类早期胚胎发育中的组蛋白修饰重编程

  在真核生物中,组蛋白与带负电荷的双螺旋DNA组装成核小体。因氨基酸成分和分子量不同,组蛋白主要分成5类:H1,H2A,H2B,H3和H4。除H1外,其他4种组蛋白均分别以二聚体形式相结合,形成核小体核心。DNA便缠绕在核小体的核心上。而H1则与核小体间的DNA结合。  组蛋白修饰(histone

细胞化学基础螺旋袢螺旋结构域

中文名称:螺旋-袢-螺旋结构域英文名称:helix-loophelix motif定  义:存在于转录因子的DNA结合结构域中的一种蛋白质结构域。由两个α螺旋和中间的一个袢组成,识别并结合特异的DNA序列。应用学科:细胞生物学(一级学科),细胞化学(二级学科)

细胞化学基础螺旋转角螺旋结构域

中文名称:螺旋-转角-螺旋结构域英文名称:helix-turnhelix motif定  义:由两个α螺旋间隔以一定角度的转角构成的结构域。其中一个α螺旋可插入DNA大沟中与专一DNA序列结合。应用学科:细胞生物学(一级学科),细胞化学(二级学科)

染色质的组装过程

①最开始是H3·H4四聚体的结合,由CAF-1介导与新合成的裸露的DNA结合。②然后是两个H2A·H2B二聚体由NAP-1和NAP-2介导加入。为了形成一个核心颗粒,新合成的组蛋白被特异地修饰。组蛋白H4的Lys5和Lys12两个位点典型地被乙酰化。③核小体最后的成熟需要ATP来创建一个规则的间距以

染色体的四级结构分别是什么

染色体的四级结构分别是由DNA与组蛋白包装成核小体,在组蛋白H1的介导下核小体彼此连接形成直径约10nm的核小体串珠结构,这是染色质包装的一级结构。在有组蛋白H1存在的情况下,由直径10nm的核小体串珠结构螺旋盘绕,每圈6个核小体,形成外径为30nm,内径10nm,螺距11nm的螺线管,这是染色质包

科学家揭示体外组装和体内染色质纤维普遍折叠模式

  9月13日,中国科学院生物物理研究所朱平研究组在国际期刊《细胞报告》(Cell Reports)在线发表论文,利用冷冻电子断层三维成像方法,揭示了体外组装和体内染色质纤维一种普遍存在的双螺旋折叠模式。  在高等生物个体的发育和分化过程中,生命体通过各种表观遗传调控染色质高级结构的动态变化,进而调

揭示人类特异基因促进大脑皮层折叠新机制

  在人类进化过程中,新皮层的扩张与智力的提高和认知功能的改善密切相关。这种扩张的一个关键方面是大脑皮层沟回的形成,它使扩张的皮质表面积能够适应有限的颅骨空间。这些进化特征主要依赖于多种神经干细胞和祖细胞亚型及其神经源性分裂产生的更多数量的皮层神经元。近年来,许多研究都揭示了外放射状胶质细胞(oRG

蛋白质折叠的细胞密码破解

  人们通常认为,疾病是由异物(细菌或病毒)入侵人体引起的,但影响人类的数百种疾病,其实是由细胞蛋白质生成错误引起的。美国马萨诸塞大学阿默斯特分校领导的团队最近利用尖端技术,破解了基于碳水化合物的代码,该代码控制某些蛋白质的正常形状,而正常的蛋白质形状才能使人体保持健康。研究发表在最新一期《分子细胞

未正确折叠蛋白介导的细胞凋亡

在真核生物体内,为正确折叠蛋白反应(unfolded protein response,UPR)是细胞对抗内质网应激的一种重要的自我保护机制。当细胞中出现长时间或高强度的UPR时,三种内质网上的跨膜蛋白PERK、IREI、ATF6在发挥修复作用的同时,也可以同时启动由ERS介导的三种细胞凋亡途径。P

活细胞工作站在哺乳动物卵母细胞中独特的组蛋白成分...

活细胞工作站在哺乳动物卵母细胞中独特的组蛋白成分H1foo的表观遗传学功能研究中的应用一、研究背景 大部分哺乳动物的组蛋白都以序列特异性的方式结合到DNA的连接序列上,连接处的核小体会因此产生高度有序的染色质结构来精确的调节基因的表达。H1foo是卵细胞中特异表达的组蛋白H1家族成员,从减数分裂胚泡

抗感染蛋白也能感知非感染细胞中的蛋白质折叠错误

  多伦多大学(university of toronto)的研究人员发现了宿主细胞对抗细菌感染的免疫机制,同时发现对这一过程至关重要的一种蛋白质能够感知并对所有哺乳动物细胞中错误折叠的蛋白质做出反应,相关研究成果于近日发表在Science。  这种蛋白质被称为血红素调控抑制因子或HRI,研究人员表