Antpedia LOGO WIKI资讯

多篇Nature论文解析出结合到DNA上起点复制复合物高清结构

细胞通过基因组复制产生自身的拷贝而进行增殖。按理说,DNA复制是所有生命形式中最基本和最保守的机制。破解这一过程是如何最精确地实现的秘密是理解生命秘密的关键。当沃森和克里克在半个多世纪前基于DNA双螺旋结构首次提出DNA的复制方式时,许多人认为将两条DNA链分开进行复制的分子机器(即DNA复制机器,或者说DNA复制复合物)的结构即将出现。然而,鉴于这种分子机器具有比较大的尺寸、三重特性(它由三个引擎组成)和灵活性,它远要比之前想象的复杂得多。利用常规方法无法获得这种DNA复制机器在原子分辨率下的结构信息。近年来,随着高分辨率的低温电镜(cryo-EM)技术的来临,人们才能获得它在原子分辨率下的结构信息。图片来自Division of Life Science, The Hong Kong University of Science and Technology 中国北京大学的高宁(Ning Gao)团队和中国香港科技大学的......阅读全文

北大学者发表JBC封面文章:真核细胞DNA复制起始新机制

  来自北京大学生科院的研究人员发表了题为“Sap1 is a replication-initiation factor essential for the assembly of pre-replicative complex in the fission yeast Schizosacchar

DNA复制体结构和工作原理首次被揭示

  DNA是生命遗传信息的载体,它的复制是生命繁衍过程当中最重要的一步。关于DNA复制分子机制的研究一直是生命科学中最基本的问题之一。近日,美国国立卫生研究院杰出研究员杨薇的课题组揭示了DNA复制体的结构和工作原理,相关成果发表在《科学》上。  DNA的复制由多个蛋白组成的复制体协同完成,这些蛋白包

一蛋白可维持DNA复制叉稳定性

  《细胞》(Cell)杂志于2012年6月8日发表了北京大学生命科学学院孔道春教授(通讯作者)与英国Sussex大学Antony Carr和Johanne Murray课题组、北京大学生命科学学院纪建国课题组和中国科学院生物物理所孙磊、孙飞课题组合作完成的论文“The Intra-S Ph

颠覆教科书,DNA复制方式或遭改写

  美国加州大学戴维斯分校和斯隆凯特林癌症纪念中心的研究人员首次捕捉到单个DNA分子的复制过程。尽管这段11秒的视频看起来像是一款上个世纪的视频游戏,但它清楚地记录下DNA复制时散发荧光的单链由左向右延伸的过程。  此前人们一直认为,DNA聚合酶构建DNA双链的过程是相互协调以某种方式协同工作的。然

染色质结构形成及DNA复制叉稳定性维持的分子机制

  100年前,研究人员发现染色体上有非常紧密的区域,并提出了异染色质结构这个概念(Montgomery TH. (1901), A study of chromosomes of the germ cells of metazoan. Trans Am Phil Soc. 20: 154-136;

首次亲眼见证!DNA复制与我们想象的并不同

  肺部具有造血功能、DNA 聚合酶不需要引物、小脑不仅控制平衡,这些新发现不断在改写着教科书。近日,发表在《细胞》杂志上的一项研究首次观察了单个DNA分子的复制画面。结果发现,DNA复制的随机性要比人们想象的要多得多。这一结论足以引发人们对DNA复制和其它生物学过程的重新思考。  6月15日,发表

北大尹玉新Cell Res发表新成果

  最近,北京大学系统生物医学研究所尹玉新课题组在Nature子刊《Cell Research》发表题为“PTEN regulates RPA1 and protects DNA replication forks”的研究成果,发现肿瘤抑制因子PTEN对于DNA复制叉的保护是必不可少的,PTEN的缺

快讯:七位学者获2019盖尔德纳奖

  北京时间,2019年4月2日晚7点30,素有“小诺贝尔奖”之称的加拿大盖尔德纳奖公布,最受关注的盖尔德纳国际奖颁给了5位在生物医学科学领域做出重大发现或贡献的科学家。  5位盖尔德纳国际奖获奖人分别为:  阐明紫杉醇的作用机制的Susan Band Horwitz博士,发现新的马达蛋白驱动蛋白的

我国学者解析DNA复制起点识别复合物高分辨冷冻电镜结构

  在国家自然科学基金项目(项目批准号:31761163004、31725007、31630087)等资助下,北京大学生命科学学院高宁教授课题组与香港科技大学戴碧瓘教授课题组合作,解析了酿酒酵母ORC结合DNA复制起始位点3-Å分辨率的冷冻电镜结构。研究成果以 “Structure of the O

Gene & Dev:揭开癌细胞复制的秘密

  南卡罗来纳医科大学霍林斯癌症中心的科学家发现,一些细胞可以在必要因子存在的情况下分裂。他们的结果发表在2018年7月的《Gene & Development》杂志上。这一发现解释了肝细胞在受伤后如何再生,以及可以帮助我们了解癌症是如何产生的,以及癌细胞如何进化以产生额外的突变,从而加速生

我国学者解析DNA复制起点识别复合物高分辨冷冻电镜结构

图. ORC通过弯曲DNA来进一步加载DNA复制解旋酶MCM2-7的过程模式图  在国家自然科学基金项目(项目批准号:31761163004、31725007、31630087)等资助下,北京大学生命科学学院高宁教授课题组与香港科技大学戴碧瓘教授课题组合作,解析了酿酒酵母ORC结合DNA复制起始位点

新研究揭示哺乳动物DNA复制机制

  在细胞中,DNA及其相关物质每隔一定时间就会复制,这是所有有机体必不可少的一个过程。这导致了从身体对疾病作出的反应到头发颜色在内的一切。DNA复制是在20世纪50年代后期确定的,但是从那以后,全球各地的研究人员都试图了解这一过程是如何精确地受到调节的。如今,科学家们知道了。  在一项新的研究中,

Cell子刊:人类基因组复制的蛋白全景图

  复制体是一种重要的蛋白复合体,是机体内的DNA复制机器。现在,科学家们利用新技术,对参与DNA复制的蛋白进行了综合分析,解析了复制体的具体成分。文章发表在Cell旗下的Cell Reports杂志上。   DNA复制是细胞分裂前的必要步骤,也是绝大多数化疗药物的作用靶标,这些药物通过破坏D

癌症“坏运气”?Science:近2/3癌症突变源于DNA复制出错!

  “近2/3的癌症突变源于DNA复制过程中随机发生的错误!”  这是来自于约翰•霍普金斯大学基默尔癌症中心(Johns Hopkins Kimmel Cancer Center)的科学家们在3月24日发表于《Science》期刊上的一篇最新学术论文的结论。它意味着,DNA复制出错是导致癌变的主要因

Nature子刊:新研究揭示BRCA癌细胞最后的“生存策略”

  作为典型的抑癌基因,BRCA负责调控细胞复制、DNA损伤修复等功能。但是,携带BRCA缺陷的癌细胞,虽然面临DNA被降解的难题,但是却有一套备用的生存机制。现在,最新研究解析了这一机制,并找到了解决化疗耐药性的关键线索。   微信图片_20171204100457.jpg   近日,《Nat

首次亲眼见证!DNA复制与我们想象的并不同

  6月15日,发表Cell杂志上题为“Independent and Stochastic Action of DNA Polymerases in the Replisome”的研究中,科学家们首次观察到了单个DNA分子的复制画面,并且获得了一些惊人的发现。研究称,DNA复制的随机性要比人们想象

Cell惊人发现:DNA复制方案因人而异

  人类细胞每次分裂的时候,都得复制六十亿DNA碱基,一个一个来显然是不现实的。事实上,DNA复制机器会同时介入多个起始点,进行分工合作。  哈佛大学医学院、Broad研究所和MIT的科学家们发现,人与人之间的DNA复制方案并不相同。他们鉴定了首个调控DNA复制时序(Replication timi

牛校Cell发文解析miRNA与表观遗传

  近期北京大学生命科学学院接连在Cell,Nature structural and molecular biology上发表文章,介绍了关于先天免疫信号转导通路中的重要接头及感应蛋白STING结构生物学研究成果,以及基因组稳定性方面的研究成果。   在“The structura

北大生科院连发Cell,Nature子刊文章

  近期北京大学生命科学学院接连在Cell,Nature structural and molecular biology上发表文章,介绍了关于先天免疫信号转导通路中的重要接头及感应蛋白STING结构生物学研究成果,以及基因组稳定性方面的研究成果。   在“The structura

颠覆性发现:DNA复制教学视频都是错的!

  脱氧核糖核酸(DNA)复制几乎是地球所有生命的基础。如今,科学家们第一次在单个DNA分子尺度观察到了它们的复制。有些令人吃惊的是,DNA复制意想不到地富有随机性。研究人员利用先进成像技术以及极大耐心,观察了大肠杆菌DNA复制,并测量了每股链上酶机器(复制复合体)的运行速度。此外,研究人员还发现单

Science破解DNA复制速度如何调控,可用于抗癌

  整个生命过程中,人类的细胞不停分裂,产生新的细胞。在这个过程中,细胞通过调节DNA复制的速度对代谢波动作出反应,以此作为基因组稳定性的保证。11月10日发表在Science上的一篇文章阐明了如何让复制叉动力学响应代谢途径的细胞学机制。研究人员还展示了他们可以操纵这个节律,并建议用来杀死癌细胞。 

Nature Nanotechnology:DNA环状分子的自主复制

  生物系统中存在很多的自主复制的例子。然而,人工制造这样的生物系统的自主复制系统却是相当困难,这是因为生物系统很复杂。在其他领域,人类可以创造某些自我复制系统,比如磁场系统以及模块化机器人等等。我们很少将这些人造的自我复制系统和生物系统中的自我复制系统进行比较。因而,如果能从理论上将人工的自主复制

Nature揭示不同寻常的DNA复制机制

  研究人员发现了细胞如何修复一种潜在的破坏性DNA损伤——双链DNA断裂的细节。   当由于氧化、电离辐射、复制错误和某些代谢产物使得染色体经受双链断裂时,细胞会利用遗传相似的染色体通过一种涉及断裂分子两端的机制来修补这一缺口。为了修复失去一端的断裂染色体,细胞会利用DNA复制机器的一种独特构型

eLife:科学家识别出关键的癌细胞弱点

  有效治愈癌症的关键就是在癌细胞中寻找在非癌细胞中并不存在的弱点,近日,一项刊登在国际杂志eLife上的研究报告中,来自东京都立医学研究所的科学家们通过研究发现,当细胞的DNA复制被阻断时,癌细胞和非癌细胞或会依赖于不同的因子来得以生存,抑制癌细胞所需的生存因子的药物或能选择性地促进癌细胞对复制抑

于洋博士等发现基因组长片段DNA插入的新机制

  我们身体中每个细胞的基因组DNA每天都会面临成千上万次的损伤。所幸的是,细胞中有一套能够修复各种类型损伤的机器来保证基因组的完整性(genome integrity)。修复DNA损伤的机器在从酵母到人所有的真核生物中都是非常保守的,因此酵母作为模式生物被广泛应用于DNA修复(DNA repair

为什么癌症无法消灭?

  2500年前,当古希腊医师希波克拉底给恶性肿瘤命名为καρκνο(意为螃蟹或小龙虾,英文译为cancer,中文译为癌)的时候,仅仅是对病人体表可见的恶性肿瘤做了形态上的描述:恶性肿瘤通常从中心的肿块向周边伸出一些分支,状如螃蟹。然而,希波克拉底不可能知道的是,更多的情况下,癌症可以发生在人体的不

清华大学Nature发表首发性成果

  2015年7月29日,清华大学高宁研究组和香港科技大学戴碧瓘教授研究组共同在《自然》(Nature)杂志上以长文形式在线发表了题为《真核生物DNA复制解旋酶MCM复合物的3.8埃分辨率结构》(Structure of the Eukaryotic Minichromosome Main

细胞周期-1

以有丝分裂方式增殖的细胞从一次分裂结束到下一次分裂结束所经历的过程。这一过程周而复始。细胞周期是50年代细胞学上重大发现之一。在这之前认为有丝分裂期是细胞增殖周期中的主要阶段,而把处于分裂间期的细胞视为细胞的静止阶段。1951 年霍华德等用32P-磷酸盐标记了蚕豆根尖细胞,通过放射自显影研究根尖

一个防御蛋白如何“叛变”致癌

  癌症是由携带DNA突变(DNA复制过程中发生的“复制错误”)的异常细胞增殖引起的。如果这些错误经常发生而对生物没有任何破坏性影响,那么其中一些就会影响基因组的特定部分,并引起突变细胞的增殖,然后侵入机体。即便一个小小的单碱基突变,也会导致癌症,例如,2015年11月,儿童肿瘤学研究人员发现了一个

科学家成功绘制出了癌症化疗疗效的动态学图谱

  化疗通常会通过诱导DNA损伤引发细胞死亡来发挥作用,然而,有些癌细胞并不会因化疗而死亡,其会进入非活动状态,俗称为衰老阶段(senescence),在该状态下,其仍有活性但却停止了永久分裂。尽管正常细胞的衰老会驱动细胞衰老以及组织退化,但癌症疗法诱导的衰老却与患者积极的临床预后结果直接相关。理解