牛校Cell发文解析miRNA与表观遗传

近期北京大学生命科学学院接连在Cell,Nature structural and molecular biology上发表文章,介绍了关于先天免疫信号转导通路中的重要接头及感应蛋白STING结构生物学研究成果,以及基因组稳定性方面的研究成果。 在“The structural basis for the sensing and binding of cyclic di-GMP by STING”文章中,蛋白质与植物基因研究国家重点实验室及生物动态成像中心(BIOPIC)苏晓东教授研究组解析了先天免疫信号转导通路中的重要接头及感应蛋白STING(STimulator of INterferon Genes)胞内部分的Apo蛋白及其与c-di-GMP(bis-(3’-5’)-cyclic dimeric GMP)复合物的晶体结构。 STING堪称“中国蛋白”之一,是2008年至2009年间......阅读全文

细胞核基因组

  每条染色体含1个DNA分子,1个细胞的全部遗传信息(基因)都编码在线状的DNA分子上。由于每个体细胞中有2套染色体(2n),故所含的DNA是由两个基因组(genome)构成。每个单倍体基因组约含3.2×109bp.人类基因的平均长度为1~1.5kb,所以基因组以足以编码1.5×106蛋白质,但实

转座子活动与染色质高级结构进化奥秘

  近日,华中农业大学棉花遗传改良团队发表相关研究论文,首次公布了棉属中比四倍体棉花基因组更大的K2基因组,并对A2基因组和D5基因组进行了升级,发现基因组特异的转座子扩增导致了基因组扩张,通过比较三维基因组研究揭示了年轻的转座子扩增伴随着棉属特异的染色质高级结构形成。  棉花(Gossypium)

细胞核基因组——重复顺序

  高度重复顺序其长度可能2、4、6、8等几个bp,较长的顺序可达200bp,但是重复拷贝数可达106次以上,例如染色体着丝粒、端粒和Y染色体长臂上的异染区就是由高度重复顺序的卫星DNA构成的,高度重复顺序不能转录,它们参与染色体结构的维持,形成结构基因间隔,可能与减数分裂时同源染色体的联会配对有关

酵母菌基因组转座子的诱变实验

基本方案 小载体聚合酶链反应 mTn诱变基因产物的表位标记             实验方法原理 实验材料

酵母菌基因组转座子的诱变实验

实验方法原理 实验材料 诱变转座子基因组文库质粒DNA试剂、试剂盒 10×TE缓冲液 pH 8.0无菌 E. coli tets kans (如 DH5c×)14 cm的LB培养基平板培养基中加入3 mg mL的四环素和40μg mL的卡那霉素LB培养基丙三醇无菌NotⅠ非限制性内切核酸酶及

染色质DNA基因组的介绍

  凡是具有细胞形态的生物其遗传物质都是DNA,只有少数病毒的遗传物质是RNA。在真核细胞中,每条未复制的染色体包含一条纵向贯穿的DNA分子。狭义而言,某一生物的细胞中储存于单倍染色体组中的总遗传信息,组成该生物的基因组。真核生物基因组DNA的含量比原核生物高得多。  突变分析结果表明,并非所有基因

陈捷凯课题组发现RNA-m6A修饰调控异染色质形成的新机制

  近日,中国科学院广州生物医药与健康研究院研究员陈捷凯课题组发现了RNA m6A修饰调控异染色质形成的新机制,阐明了RNA m6A阅读器YTHDC1在这一机制中的关键作用:抑制基因组中广泛分布的ERVK、IAP、LINE1等转座元件限制胚胎干细胞向全能性干细胞转化,相关研究成果以The RNA m

深度剖析基因组自我调节的新型分子机制

  近日,两篇刊登在国际杂志Molecular Cell上的研究报告中,来自加州理工学院等机构的科学家们通过研究揭示了基因组自我调节的分子机制。生物体的基因组中包含了每个细胞和组织发育和发挥正常功能所需要的所有信息,当被写入DNA后,每个基因都会进行信息编码,包括帮助确定组织形状的结构蛋白、催化生命

遗传发育所等在表观遗传调控水稻转座子活性方面获进展

  转座元件是指在基因组中能够移动或复制并重新整合到基因组新位点的DNA片段,它们对动植物基因组的组成、进化和基因表达具有重要影响。而在宿主基因组中,如果失去对转座元件的有效抑制,这些元件将对基因表达和基因组的稳定性构成影响。水稻是主要的粮食作物同时也是重要的单子叶模式植物,其中

Cell免费论文:转录调控的新思路

  来自奥地利维也纳分子生物技术研究所的研究人员发现了转座子和piRNA对染色质模式,以及基因表达的广泛影响,对于未来深入探索这一沉默途径,以及染色质状态基因表达具有重要的意义。相关成果公布在Cell杂志上,目前可免费获取。   领导这一研究的是分子生物技术研究所的Julius Brennecke

PNAS:衰老过程的罪魁祸首――转座子

多年来,科学家们一直在研究遗传因素对衰老的贡献,但是成果甚少。最近,一项新的研究阐明了转座子在加速衰老过程中的作用。在过去的十年中,科学家们已经开始认识到非编码序列在我们基因组中所起的重要生物作用。一种特别“狡猾”的非编码元件――高度重复的转座子,能将自己插入到我们基因组中任何可访问的部分,从而有可

Nature重要发现:跳跃基因的拦路虎

  一个称之为组蛋白的蛋白质家族为DNA提供了支持和并赋予其结构,然而多年来科学家们一直对其中的一些非常规组蛋白感到迷惑不解,它们似乎是因为特殊而又通常神秘的原因而存在。现在,研究结果揭示出了这样一种组蛋白变体的新用途:通过让某些所谓的“跳跃基因”待在合适的位置阻止了遗传突变。  这项由洛克菲勒大学

Nature:真核生物细胞核中染色质分离新机制

  在细胞核中基因组的活性部分与它的非活性部分在空间上分隔开来对于基因表达控制至关重要。在一项新的研究中,来自德国慕尼黑大学、美国麻省理工学院和马萨诸塞大学医学院的研究人员揭示了这种分离的主要机制,并颠覆了我们对细胞核的认识。相关研究结果近期发表在Nature期刊上,论文标题为“Heterochro

首个棉花纤维高清动态3D基因组结构图谱建成

   近日,华中农业大学棉花遗传改良团队首次构建了棉花纤维的高分辨率三维基因组结构图谱,揭示了亚基因组协作调控异源四倍体棉花纤维发育的拓扑结构基础,对棉花功能基因组研究具有重要推动作用。棉花纤维是纯净的植物单细胞类型,该研究为解析其他植物单细胞分化的转录调控机制提供了参考。相关研究成果在线发表于国际

著名学者朱健康院士Cell-Research发表表观遗传学研究成果

  生物通报道:转座子通常是通过表观遗传学机制(包括DNA甲基化)保持沉默的。12月9日,在《Cell Research》杂志上发表的一项研究中,来自中科院上海生命科学研究院、美国普渡大学以及中科院遗传与发育生物学研究所的研究人员,在拟南芥中将一对Harbinger转座子衍生蛋白(HDPs)——HD

研究发现PANDAS复合物在piRNA调控异染色质形成的分子机制

  转座子(transposon)由冷泉港实验室Barbara McClintock(诺贝尔奖)首先在玉米中发现。转座子又被称为“跳跃基因”,类似于内源性病毒,能够在宿主基因组中“复制和粘贴”自己的DNA,以达到其自我“繁殖”的目的。转座子的“跳跃”可能会产生基因组不稳定性,并导致动物不孕不育。有多

Nature-Genetics刷新旧观念:重复序列在胚胎发育起重要作用

  Nature Genetics刷新旧观念:重复序列在胚胎发育起重要作用   反转录转座子是构成几乎一半哺乳动物基因组的重复单元。尽管它们很常见,但它们以前被认为是相当微不足道的。德国亥姆霍兹慕尼黑中心Helmholtz Zentrum München科学家和法国、美国的研究人员合作8月28日在

综述:细胞全能性——分子特征以及建立与维持

  以胚胎干细胞(embryonic stem cells)和诱导多能干细胞(iPSC: induced pluripotent stem cells)为代表的多能干细胞(pluripotent stem cells)可以在体外无限培养扩增,在再生医学以及疾病模型的研究中有着广阔的前景。多能干细胞可

综述:细胞全能性——分子特征以及建立与维持

   以胚胎干细胞(embryonic stem cells)和诱导多能干细胞(iPSC: induced pluripotent stem cells)为代表的多能干细胞(pluripotent stem cells)可以在体外无限培养扩增,在再生医学以及疾病模型的研究中有着广阔的前景。多能干细胞

植物着丝粒研究取得进展

  基因组测序及解析以及新技术的广泛应用,让人们得以继续探索着丝粒和端粒等染色体上高度重复区域在生命活动中的新功能。植物着丝粒含有丰富的重复序列,如串联重复序列(Satellite)和反转座子(Retrotransposon),参与基因组空间构象和细胞分裂等重要的生物学功能。然而不同物种双着丝粒染色

酵母菌基因组转座子的诱变实验——基本方案

实验材料诱变转座子基因组文库质粒DNA试剂、试剂盒10×TE缓冲液 pH 8.0无菌 E. coli tetskans (如 DH5c×)14 cm的LB培养基平板培养基中加入3 mg mL的四环素和40μg mL的卡那霉素LB培养基丙三醇无菌NotⅠ非限制性内切核酸酶及缓冲液Ura3_酵母菌培养一

北京基因组所单细胞中识别染色质类染色质拓扑的算法

  基因组DNA和组蛋白以特定的形式高度折叠在细胞核中,这一高级结构即三维基因组学,对细胞核内的诸多生命活动至关重要。基于染色质构象捕获(3C),尤其是高通量技术(Hi-C,ChIA-PET)的发展推动了三维基因组的研究,发现了包括染色质拓扑相关结构域(TAD),染色质环等一系列层次化的结构特征。近

遗传发育所在植物着丝粒研究中取进展

  基因组测序及解析以及新技术的广泛应用,让人们得以继续探索着丝粒和端粒等染色体上高度重复区域在生命活动中的新功能。植物着丝粒含有丰富的重复序列,如串联重复序列(Satellite)和反转座子(Retrotransposon),参与基因组空间构象和细胞分裂等重要的生物学功能。然而不同物种双着丝粒染色

研究者首次发现“驯化”的水稻“外来DNA”

  转座子是一种可以改变自身基因组位置的DNA序列,其通过转座事件改变细胞遗传特性和基因组大小。转座子通常被认为是外来DNA,“寄生”于宿主基因组中,但它们也可以在基因组中被“驯化”,并进化出有益于宿主的新功能。迄今为止,大多数驯化转座子都在哺乳动物中发现,只有少数转座子驯化在植物中被报道。在农作物

表观遗传调控水稻重要农艺性状研究获进展

  转座子(transposon)是一段自身能够插入到基因组上的DNA片段,上世纪40年代,芭芭拉·麦克林托克(Barbara McClintock)首先在玉米中发现了转座子。从简单的细菌到复杂的人类,转座子广泛存在。转座子随机插入到重要基因中,会引发疾病、癌症和其他生理缺陷。DNA甲基化、组蛋

研究发现去甲基化酶REF6是基因组中靶向的重要因素

  核小体是真核生物染色质的基本单位,由DNA缠绕组蛋白八聚体构成。组蛋白翻译后共价修饰是表观遗传调控的重要方式之一,通过影响染色质的状态而调控基因表达等过程。组蛋白H3第27位赖氨酸的三甲基化修饰(H3K27me3)通过维持基因的沉默状态,在动植物细胞命运决定以及生长发育中发挥重要的调控作用。基因

转座子及转座子标签法克隆基因的改进

1 转座子及转座子标签法克隆基因基因标签法克隆植物组织中的基因是较为常用的一种方法,T-DNA和转座子均可作为基因标签。转座子最早由美国的细胞遗传学家Mc-clintock在玉米中发现,它是指基因组中一段特定DNA片段,能在转位酶的作用下从基因组的一个位点转移到另一个位点。转座子不仅能在本基因组中转

遗传发育所在黍子的基因组研究中取得进展

  多倍化在植物进化过程中反复发生,呈现出多倍体化-二倍体化的循环模式,所有被子植物至少经历了一次多倍化事件。多倍体形成之后,通常会迅速进入二倍体化的过程,最终演变成二倍体。多倍化后的基因组休克和二倍化可能导致亚基因组优势,即显性基因组保留更多的祖先基因并显示更高的同源基因表达。然而,二倍体化的分子

基因组中“暗物质”关键调控机制

   中国科学院广州生物医药与健康研究院陈捷凯课题组与南方科技大学Andrew P. Hutchins课题组合作,以小鼠胚胎干细胞为模型,揭示了基因组中转座元件的关键表观遗传调控机制,相关成果以Transposable elements are regulated by context-specif

分离的细胞核的染色质的微球菌核酸酶消化实验

实验材料动物组织 [如肝、肾和(或)脾]试剂、试剂盒核缓冲液 A、B、C无 Ca 和 Mg 离子(CMF) 的 PBSNaOH2×TNESK 溶液CaCl2微球菌核酸酶(MNase) 储液仪器、耗材剃刀刀片或解剖刀培养皿带有聚四氟乙烯包被的磨棒的组织匀浆器电动组织磨碎机相差显微镜轻薄棉布玻璃离心管(