Antpedia LOGO WIKI资讯

中科院植物研究所林荣呈课题组MolecularPlant揭示调控通路

植物通过光合作用利用光能将二氧化碳和水转化为有机物并释放出氧气。叶绿体含有叶绿素,是植物进行光合作用的重要场所。叶绿素生物合成对于叶绿体发育和植物光合作用非常关键。虽然人们已经比较了解这个通路中的反应,但对这个通路的调控还知之甚少。 中科院植物研究所的研究团队最近在Molecular Plant杂志上发表文章,揭示了拟南芥调控叶绿素生物合成的新机制。文章通讯作者是中科院植物研究所的林荣呈(Rongcheng Lin)研究员。 BRAHMA (BRM)编码一个SWI2/SNF2染色质重塑ATPase。研究人员发现,对BRM进行敲除、敲低和RNA干扰会影响拟南芥,使其在光照下转绿率(greening rates)更高,累积较少的原叶绿素酸酯,生产较少的活性氧。 原叶绿素酸酯氧化还原酶PORA、PORB和PORC负责催化叶绿素生物合成的关键一步。研究显示,BRM通过N端结构域与转录因子PIF1相互作用。BRM以PIF1依赖的......阅读全文

中科院植物研究所林荣呈课题组Molecular Plant揭示调控通路

  植物通过光合作用利用光能将二氧化碳和水转化为有机物并释放出氧气。叶绿体含有叶绿素,是植物进行光合作用的重要场所。叶绿素生物合成对于叶绿体发育和植物光合作用非常关键。虽然人们已经比较了解这个通路中的反应,但对这个通路的调控还知之甚少。  中科院植物研究所的研究团队最近在Molecular Plan

Molecular Plant:研究揭示温度调控稻瘟病发生的机制

  近日,中国水稻研究所水稻生物学国家重点实验室水稻-病原菌互作团队,揭示了温度影响稻瘟病发生的机制,为科学应对未来气候变化,有效防控稻瘟病的发生提供了理论依据。相关研究成果在线发表于《分子植物(Molecular Plant)》。  植物病害的发生、发展到流行,取决于病原、寄主植物和环境因素三要素

植物所揭示植物暗形态建成的调控机制

  植物根据黑暗或光照环境的差异采取截然不同的生长模式。在黑暗中,植物幼苗快速长高(暗形态建成),这种方式便于穿透土壤,并见光进行光合自养生长;而在光下,幼苗的纵向生长速度明显减慢(光形态建成),有利于减少能量消耗并保持茎干粗壮。植物的这种生长方式由光信号转导通路调控,但其调节机制仍不十分清楚。  

中科院团队Nature子刊揭示新信号通路

  开花植物的种子会在不利条件下保持休眠状态,等到条件有利的时候再萌发,生成一个新的植株。种子的休眠和萌发受到内部和外部信号的严格控制。虽然人们知道光敏色素调控初级种子休眠,但还不清楚其中的分子机制。  中科院植物研究所的科学家们八月十日在Nature Communications杂志上发表文章,揭

植物所在植物光形态建成转录调控方面取得进展

  转录调控是生物体内由转录因子和其他调节蛋白协同或拮抗调控基因表达的重要生化机制。光信号是高等植物早期生长发育中光形态建成的决定性因素,其信号通路中光敏色素互作因子PIF为负向调控因子,HY5为正向调控因子。PIF和HY5分别是bHLH型和bZIP型转录因子,在植物生长发育及环境响应中具有广泛的功

植物所在植物光形态建成转录调控方面取得进展

  转录调控是生物体内由转录因子和其他调节蛋白协同或拮抗调控基因表达的重要生化机制。光信号是高等植物早期生长发育中光形态建成的决定性因素,其信号通路中光敏色素互作因子PIF为负向调控因子,HY5为正向调控因子。PIF和HY5分别是bHLH型和bZIP型转录因子,在植物生长发育及环境响应中具有广泛的功

中科院Plant Cell揭示植物-菌根共生能量来源

   4月30日,国际学术期刊The Plant Cell在线发表了中国科学院上海生命科学研究院植物生理生态研究所王二涛研究组关于菌根共生的最新研究成果A H+-ATPase that Energizes Nutrient Uptake during Mycorrhizal Symbioses in

研究揭示光-温信号整合机制

  对于植物而言,光照与温度是两个非常重要的环境因子。植物能精确感知光照的波长、强度、周期等参数,并依据其变化动态调整自身的生长发育。同样,非胁迫的环境高温也调节植物的形态建成和开花等生长发育进程。近年来的研究发现,植物对光照和温度的响应存在偶联关系,但只找到了少数蛋白质在两者信号整合中发挥作用。因

Molecular Plant:生物钟调控叶片衰老新机制

  生物钟是生物体为适应环境昼夜周期变化而进化出的协调细胞内基因表达、代谢网络调控的分子系统,调控植物的新陈代谢、生长发育等多个过程。生物钟使植物的内源节律与外部昼夜变化的光和温度等环境条件相协调,为植物的生长发育提供竞争性优势。叶片衰老过程能将营养和能量从衰老的叶片向正在发育的组织和器官转移,以便

微生物所刘俊课题组揭示细菌摄取寄主铁元素的新机制

  The Plant Cell:微生物所刘俊课题组揭示细菌摄取寄主铁元素的新机制  铁是几乎所有生物体所必需的矿物质营养元素。与动物从食物中获取铁元素一样,植物病原菌也需要从寄主植物中获取铁元素用于自身的生长繁殖。然而,人们对病菌如何获取植物宿主铁元素的机制知之甚少。丁香假单胞菌(Pseudomo