布鲁克推出高端体内成像显微镜

分析测试百科网讯 2015年11月11日,布鲁克推出一款高性能多光子体内成像显微镜。仪器采用流线型设计,集成多个体内和体外模型的创新性能,四个紧密连接的探测器可以实现最大化收集效率,当与布鲁克下一代前置放大器组合使用时,产生的信噪水平可以使高速成像深度达1微米。仪器还拥有一个允许离轴成像的可转动鼻部件,可应用于体内神经活动研究。 基于布鲁克点扫描技术,仪器结合了改进的检测路径和下一代前置放大器,增加了光子收集效率并提高了信噪比。布鲁克报告显示,显微镜平台为活体提供了宽大的间隙,并在脑成像应用中提供了离轴成像能力。视图软件提供了链接到其他软件平台的数据传输和脚本,允许在数据采集过程中进行闭环实验。一个可选的谐振电流计能够进行高速应用,全帧速率可以达到每秒30帧,关注区域的速率可超过每秒500帧。仪器提供精简功能和附加功能的组合,不论小型实验室或大型实验室,显微镜平台都可以为其提供体内成像的研究价值。......阅读全文

布鲁克推出高端体内成像显微镜

  分析测试百科网讯 2015年11月11日,布鲁克推出一款高性能多光子体内成像显微镜。仪器采用流线型设计,集成多个体内和体外模型的创新性能,四个紧密连接的探测器可以实现最大化收集效率,当与布鲁克下一代前置放大器组合使用时,产生的信噪水平可以使高速成像深度达1微米。仪器还拥有一个允许离轴成像的可转动

多光子显微镜成像技术:多光子显微镜用于体内神经元...

多光子显微镜成像技术:多光子显微镜用于体内神经元成像的多种技术与传统的单光子宽视野荧光显微镜相比,多光子显微镜(MPM)具有光学切片和深层成像等功能,这两个优势极大地促进了研究者们对于完整活体大脑深处神经的了解与认识。2019年,Jerome Lecoq等人从大脑深处的神经元成像、大量神经元成像、高

布鲁克推出红外微区快速成像-Hyperion3000-红外显微镜

  红外显微镜是微区分析的重要工具,可以分析纳克或微米级样品。 红外微区成像是近年来发展的一种最新的分析手段。 可见光显微镜可以给出样品的可见光图像,而红外微区成像能给出样品的分子分布信息,二者的信息是很好的互相补充。以往的红外显微镜采用单元检测器或者线阵列检测器,分别含有1个或

体内荧光成像技术的进展(二)

可激活定靶探针可激活定靶探针一般用于酶活的功能成像。它们往往含有两个以上的等同或不同的色素团,两个色素团通过酶特异性多肽接头彼此紧密相连。这类探针主要呈黑色,没有或者很少发射荧光,这主要是由于非常相近(等同色素团)或者共振能的转移(不同色素团 )所造成的淬灭效应所致。多肽接头的切除,使它们的

体内荧光成像技术的进展(一)

体内荧光成像技术利用一架灵敏的照相机,检测活的整体小动物荧光团的荧光发射,从而获得清晰的图像。为了克服活组织的光子衰减,通常优先选取近红外区(NIR)的长波发射荧光团,包括广泛应用的小分子靛炭菁染料。NIR探针的数目最近随着有机、无机和生物荧光纳米颗粒的采用而不断增加。在体内荧光成像领域,成像策略和

体内荧光成像技术的进展(三)

成像新策略的出现改进探针亲和性的多种途径探针同靶点的紧密和特异性结合通常是成像成功的关键。因为许多成像靶点都位于细胞表面之外,所以多途径原则可以用来改善探针的结合亲和性。最近有两篇文献报道了用于异种移植肿瘤αvβ3 整合素(integrin)体内成像的RGD(Arg-Gly-Asp )寡肽的

活体动物体内成像技术文献

1. 细胞凋亡与白血病Activation of Apoptosis in Vivo by a Hydrocarbon-Stapled BH3 HelixSCIENCE 2004,305:1466-1470 通过对BCL-2蛋白家族BID的BH3结构域进行化学修饰,使其容易穿过细胞膜,在活体内研究其

部署临床前成像产品,布鲁克又收购一家前沿企业

  亚利桑那州图森--(美国商业资讯) --布鲁克公司(Bruker Corporation, Nasdaq: BRKR)近日宣布,公司已收购临床前体内光学成像系统领域的领导者——Spectral Instruments 成像有限责任公司。此次收购通过体内光学成像补充了布鲁克的临床前成像产品组合,填

布鲁克ftir和化学成像SNOM/AFM显微系统问世

  近日,在第四届欧洲纳米红外光谱年度论坛上,布鲁克(纳斯达克股票代码:BRKR)宣布推出nanoIR3-s Broadband™纳米级FTIR光谱系统。  该系统将布鲁克业界领先的高性能nanoIR3-s s-SNOM(散射扫描近场光学显微镜)平台与最先进的飞秒红外激光技术相结合。 这种独特地组合

布鲁克推出分子药物成像系统,可用于分子药物研发

  在第10届国际药物代谢学会(ISSX)上,布鲁克宣布推出最新的一款分子药物成像解决方案,用于临床前期药物和代谢物的成像。  基于MALDI的组织成像技术为研究人员研究药物提供了非常强大的技术,可以准确定位分子药物和它们的代谢,或者是脂质在组织结构中活动,并且为研究生理学功能提供关键技术,这在以前

布鲁克正式收购PMOD,意在加强PET/MR成像分析能力

  分析测试百科网讯 近日,布鲁克宣布正式收购专注于分子量化和药代动力学建模的临床前和分子成像软件供应商——PMOD Technologies LLC。据悉,PMOD软件广泛用于分析神经病学、心脏病学和肿瘤学中的正电子发射断层扫描(PET)成像研究,同时也可以用于临床前和人体分子成像研究。 PMOD

活体动物体内成像技术文献3

1.  Systemic tumor targeting and killing by Sindbis viral vectors NATURE BIOTECHNOLOGY 22 (1): 70-77, January 2004 本文依据Sindbis病毒对癌细胞表面超量表达的LAMR的识别的机

活体动物体内光学成像(九)

关于活体成像系统常见问题解答1. 关于小动物活体成像技术的起源与发展活体动物体内光学成像主要采用生物发光与荧光两种技术。生物发光是用荧光素酶基因标记细胞或DNA,而荧光技术则采用荧光报告基团(GFP、RFP, Cy5及Cy7等)进行标记。该技术最初是由美国斯坦福大学的科学家采用了世界上最优秀

活体动物体内光学成像(七)

关于生物发光与荧光及其它技术的比较 34. 荧光检测与生物发光检测的优势与劣势比较如何?  荧光发光需要激发光,但生物体内很多物质在受到激发光激发后,也会发出荧光,产生的非特异性荧光会影响到检测灵敏度。特别是当发光细胞深藏于组织内部,则需要较高能量的激发光源,也就会产生很强的背景噪音。作为体内报告源

活体动物体内光学成像(六)

17. 标记好的细胞的荧光素酶是随机还是插入固定的位点? 插入的位点是随机的,但每一个构建好的细胞株我们都做过详细的分析,与其母细胞株进行详细的比较,证明荧光素酶的插入对细胞的各种特性(包括生长周期, 成瘤性等)没有造成影响。18. 能标记病毒吗?能标记病毒的某一个基因吗? 可以标记病毒,由于病毒在

活体动物体内光学成像(十)

3. 关于CCD的“背部薄化、背照射”与“冷”的确切含义是什么?之所以叫冷CCD,是由于CCD的芯片温度下降到零下70℃或110℃,可以降低噪音,提高检测的灵敏度。Cryogenic 的制冷技术可以使CCD的温度达到-70℃到 -110℃,那样的温度可以使背照射冷CCD的暗电流减少到可忽略不

活体动物体内光学成像(二)

3. 实验过程 通过分子生物学克隆技术, 应用单克隆细胞技术的筛选,将荧光素酶的基因稳定整合到预期观察的细胞的染色体内,培养出能稳定表达荧光素酶蛋白的细胞株。典型的成像过程是:小鼠经过麻醉系统被麻醉后放入成像暗箱平台,软件控制平台的升降到一个合适的视野,自动开启照明灯拍摄第一次背景图。下一步,自动关

活体动物体内光学成像(一)

活体动物体内光学成像主要采用生物发光与荧光两种技术。生物发光是用荧光素酶基因标记细胞或DNA,而荧光技术则采用荧光报告基团(GFP、RFP, Cy5及Cy7等)进行标记。该技术最初是由美国斯坦福大学的科学家采用了世界上最优秀的高性能CCD研发与生产制造商Roper scientific公司最

活体动物体内成像技术文献2

12. 药物对蛋白质相互作用的影响Kinetics of regulated protein-protein interactions revealed with firefly luciferase complementation imaging in cells and living anima

活体动物体内光学成像(四)

3. 标记细菌(1) 细菌侵染研究可以用标记好的革兰氏阳性和阴性细菌侵染活体动物, 观测其在动物体内的繁殖部位、数量变化及对外界因素的反应。(2) 抗生素药物利用标记好的细菌在动物体内对药物的反应,医药公司和研究机构可用这种成像技术进行药物筛选和临床前动物实验研究。4. 基因表达和蛋白质相互作用(1

活体动物体内光学成像(五)

3. 底物荧光素(Luciferin)是如何进入小鼠体内的?需要多少? 荧光素是腹腔注射或尾部静脉注射进入小鼠体内的,约一分钟就可以扩散到小鼠全身。 大部分发表的文章中,荧光素的浓度是150mg/kg (见下图)。20克的小鼠需要3毫克的荧光素,价钱约两到三美元。常用方法是腹腔注射,扩散较慢

活体动物体内光学成像(八)

关于技术应用42. 可以用荧光素酶基因标记干细胞吗?如何标记? 可以,标记干细胞有几种方法。一种是标记组成性表达的基因,做成转基因小鼠,干细胞就被标记了,从此小鼠的骨髓取出造血干细胞,移植到另外一只小鼠的骨髓内,可以用该技术示踪造血干细胞在体内的增殖和分化及迁徙到全身的过程。另外一种方法是用慢病

活体动物体内光学成像(三)

(2) 免疫学与干细胞研究将荧光素酶标记的造血干细胞移植入脾及骨髓,可用于实时观测活体动物体内干细胞造血过程的早期事件及动力学变化。有研究表明,应用带有生物发光标记基因的小鼠淋巴细胞,检测放射及化学药物治疗的效果,寻找在肿瘤骨髓转移及抗肿瘤免疫治疗中复杂的细胞机制。应用可见光活体成像原理标记细胞,建

显微镜成像因素

由于客观条件,任何光学系统都不能生成理论上理想的像,各种相差的存在影响了成像质量。下面分别简要介绍各种相差。 1、色差 色差是透镜成像的一个严重缺陷,发生在多色光为光源的情况下,单色光不产生色差。白光由红 橙 黄 绿 青 蓝 紫 七种组成,各种光的波长不同 ,所以在通过透镜时的折射率也不同,这样物方

显微镜成像原理

    显微镜是由一个透镜或几个透镜的组合构成的一种光学仪器,是人类进入原子时代的标志。主要用于放大微小物体成为人的肉眼所能看到的仪器。显微镜分光学显微镜和电子显微镜。显微镜成像原理:      显微镜主要由目镜、物镜、载物台和反光镜组成。目镜和物镜都是凸透镜,焦距不同。物镜的凸透镜焦距小于目镜的凸

显微镜成像原理

其实普通的光学显微镜是根据凸透镜的成像原理,要经过凸透镜的两次成像.第一次先经过物镜(凸透镜1)成像,这时候的物体应该在物镜(凸透镜1)的一倍焦距和两倍焦距之间,根据物理学的原理,成的应该是放大的倒立的实像.而后以第一次成的物像作为“物体”,经过目镜的第二次成像.由于我们观察的时候是在目镜的另外一侧

多光子显微镜成像技术:双光子显微镜角膜成像

角膜提供了眼睛的大部分折射能力,由5层组成(图1),从外到内依次是上皮层,鲍曼层、基质、角膜后弹力层(间质膜)、内皮层。 wx_article_20200815180121_819doe.jpg 图1 角膜的组织学结构 上皮层负责阻挡异物落入角膜,厚约50μm,由三

多光子显微镜成像技术:双光子显微镜角膜成像

角膜提供了眼睛的大部分折射能力,由5层组成(图1),从外到内依次是上皮层,鲍曼层、基质、角膜后弹力层(间质膜)、内皮层。图1 角膜的组织学结构上皮层负责阻挡异物落入角膜,厚约50μm,由三种细胞构成,从外到内依次是表层细胞、翼细胞和基底细胞。只有基底细胞可进行有丝分裂和分化,基底细胞的补充是由从角膜

布鲁克收购纳米分析仪器厂商JPK-以丰富生物学测量业务

  分析测试百科网讯 马萨诸塞州──2018年7月12日,布鲁克公司宣布收购位于德国柏林的JPK Instruments AG(JPK)。 2017年,JPK Instruments的收入约为1000万欧元。JPK提供用于生物分子和细胞成像的显微镜检测器,以及对单个分子,细胞和组织间作用力力测量。J

布鲁克BioScope-Resolve生物型原子力显微镜

布鲁克BioScope Resolve生物型原子力显微镜  产品技术特点——技术要与用户体验相结合,布鲁克AFM产品不但注重技术方面的革新,同时也注重将这些技术进步融入到易用性中,让即使是刚刚接触AFM的用户也能够迅速上手。比如BrukerZL峰值力轻敲(PeakForce  Tapping)技术,