多光子显微镜成像技术:双光子显微镜角膜成像

角膜提供了眼睛的大部分折射能力,由5层组成(图1),从外到内依次是上皮层,鲍曼层、基质、角膜后弹力层(间质膜)、内皮层。图1 角膜的组织学结构上皮层负责阻挡异物落入角膜,厚约50μm,由三种细胞构成,从外到内依次是表层细胞、翼细胞和基底细胞。只有基底细胞可进行有丝分裂和分化,基底细胞的补充是由从角膜边缘的干细胞完成的。翼细胞由基底细胞分化而来,处于中度分化状态,形状像羽翼。表层细胞完全分化,不断脱落。基底细胞下方有一层基底膜,由基底细胞分泌而来。鲍曼层是一层无细胞结构的薄膜,厚8~12μm,主要成分为杂乱交织的胶原蛋白纤维。基质厚约450μm,占角膜厚度的90%,是维持角膜形状、强度和透明性的主力,由规则分布的胶原蛋白纤维、基质细胞和基质外成分构成。基质结构中,长度和直径均一的胶原蛋白平行分布,构成片晶结构,多个片晶制成起整个基质。基质细胞通过合成胶原蛋白和基质外成分对基质进行保养和再生。基质部分通过水合作用对角膜的含水量进行调......阅读全文

多光子显微镜成像技术:双光子显微镜角膜成像

角膜提供了眼睛的大部分折射能力,由5层组成(图1),从外到内依次是上皮层,鲍曼层、基质、角膜后弹力层(间质膜)、内皮层。 wx_article_20200815180121_819doe.jpg 图1 角膜的组织学结构 上皮层负责阻挡异物落入角膜,厚约50μm,由三

多光子显微镜成像技术:双光子显微镜角膜成像

角膜提供了眼睛的大部分折射能力,由5层组成(图1),从外到内依次是上皮层,鲍曼层、基质、角膜后弹力层(间质膜)、内皮层。图1 角膜的组织学结构上皮层负责阻挡异物落入角膜,厚约50μm,由三种细胞构成,从外到内依次是表层细胞、翼细胞和基底细胞。只有基底细胞可进行有丝分裂和分化,基底细胞的补充是由从角膜

LaVision双光子显微镜多线扫描双光子成像(一)

Journal of Neuroscience Methods 151 (2006) 276–286Application of multiline two-photon microscopy to functional in vivo imagingRafael Kurtz a,∗, Matthi

LaVision双光子显微镜多线扫描双光子成像(二)

2. 方法与结果    为了从激光扫描显微镜的功能性成像中得出重要结论,一个高的时间分辨率是很重要的。在低光情况下,这通常通过进行单线扫描来获取。这被以一个垂直系统(VS)神经元的突触前分支的激光共聚焦(Leica SP2)钙离子成像示例 (see Fig. 1, Table 1). 这类神

LaVision双光子显微镜多线扫描双光子成像(四)

2.3. 多线TPLSM中的获取模式    我们以两种获取模式操作多线TPLSM:第一种,整个研究使用所谓“帧扫描”模式,以64束激光在X、Y方向扫描样品。因此焦平面上激发了均一性照明,假定光束阵列的横向步长尺寸没有过于粗糙(通常使用≤400 nm的步长尺寸)。在Fig. 3A,展示了以“帧

LaVision双光子显微镜多线扫描双光子成像(三)

2.2.多线TPLSM中通过成像检测释放光    在单光束TPLSM中,光电倍增管PMT或者雪崩二极管APD可以很方便地用于释放光检测,由于双光子激发的原理,激发只发生在激光焦点处。因此,用于屏蔽离焦光线的共焦小孔变得不必要,并且可以使用NDD检测。这意味着激发光不会被送回扫描镜,而是直接进入位于靠

多光子显微镜成像技术:大视场多区域脑成像技术

为了了解神经回路的功能以及神经元之间的相互作用,需要对不同区域的大量神经元进行活体成像,我们这里介绍两种显微镜技术,分别针对大视场多区域成像和自由活动小鼠的活体成像。从图1可以看出用于视觉处理的神经元分布在直径约3毫米的区域——小鼠初级视觉皮层和多个较高级的视觉区域。当前的商用双光子显微镜系统通常提

多光子显微镜成像技术:多光子显微镜用于体内神经元...

多光子显微镜成像技术:多光子显微镜用于体内神经元成像的多种技术与传统的单光子宽视野荧光显微镜相比,多光子显微镜(MPM)具有光学切片和深层成像等功能,这两个优势极大地促进了研究者们对于完整活体大脑深处神经的了解与认识。2019年,Jerome Lecoq等人从大脑深处的神经元成像、大量神经元成像、高

多光子显微镜成像技术:偏振分辨倍频显微镜及其图像...

多光子显微镜成像技术:偏振分辨倍频显微镜及其图像处理 在非线性光学显微镜中,二倍频(SHG)成像通常用于观测内源性纤维状结构,且SHG的强度很大程度上取决于入射光束的偏振方向与目标分子取向轴之间的相对角度。因此,基于偏振的SHG成像(P-SHG),可通过分析SHG信号强度与入射光束的偏振态之间

双光子显微镜的双光子显微镜的优势

双光子荧光显微镜有很多优点:1)长波长的光比短波长的光受散射影响较小容易穿透标本;2)焦平面外的荧光分子不被激发使较多的激发光可以到达焦平面,使激发光可以穿透更深的标本;3)长波长的近红外光比短波长的光对细胞毒性小;4)使用双光子显微镜观察标本的时候,只有在焦平面上才有光漂白和光毒性。所以,双光子显

双光子成像和光声成像的区别

特点、性质。双光子成像和光声成像的区别在于特点、性质。1、特点:光声成像能够实现高特异性光谱组织的选择激发。双光子成像能够调节分辨率和成像深度,是近年来新兴的成像技术。2、性质:光声成像 结合了光学成像和声学成像的优点。双光子是近红外(NIR)一区(750-1000nm)和NIR二区(1000-17

LaVision双光子显微镜肿瘤生长与入侵动态成像(三)

Fig 4. HT-1080双色细胞的原位入侵模型。a 注射后6天入侵类型的分类。缺少入侵(上,左)并且散布单个细胞(上,右;白色箭头),散射的或者紧密地丝状整体入侵(下图)。标尺250um。 b 45个连续的非依赖性肿瘤的按中所分入侵模式的频率。11天时,沿着纹状肌肉纤维集体入侵丝的定位。

LaVision双光子显微镜肿瘤生长与入侵动态成像(一)

Dynamic imaging of cancer growth and invasion: a modiWedskin-fold chamber modelStephanie Alexander · Gudrun E. Koehl ·Markus Hirschberg · Edward K. Ge

Lavision双光子显微镜毛囊再生过程活体成像(一)

Live imaging of stem cell and progeny behaviour in physiological hair-follicle regenerationPanteleimon Rompolas1, Elizabeth R. Deschene1*, Giovanni

LaVision双光子显微镜肿瘤生长与入侵动态成像(二)

Fig 2. 肿瘤生长阶段。 a 由落射荧光显微镜监测的移植瘤生长和入侵的时间进程。新生血管的插入,不存在(3天)和存在(7天)。标尺1mm。b 通过以day 1的体积进行归一化的肿瘤体积。mean+-SD(n=9)。c HT-1080移植肿瘤在6天的时候的肿瘤形态,血管化,分生和凋亡。

Lavision双光子显微镜毛囊再生过程活体成像(二)

Figure 2 |生长过程中处于形态重组的干细胞progeny隔层. a, 毛囊生长中的向下伸展。生长状态的活毛囊三个连续时间点(3小时间隔)的光学切片,展示了progeny组分向下的伸展(左三) 。核间距增加,干细胞和progen隔层(大约生长初期 II to IIIa)中的总细胞数被定

LaVision双光子显微镜无损伤无标记THG成像(三)

Fig. 4.THG成像深度与自动化细胞检测 (A–C) 小鼠额前叶皮质的THG图像,成像深度分别为100, 200, and 300 μm 。每幅图像都是3个以2微米深度间隔独立图像的最大密度投影(D) 110 μm深度处神经元细胞的自动检测THG图像。细胞检测的运算法则定义为以红色显示的

Nature子刊:高速双光子显微镜可用于小鼠大脑成像

  近日,美国斯坦福大学Mark J. Schnitzer及其研究小组研发出可用于清醒小鼠大脑成像的千赫兹双光子显微镜。这一研究成果于2019年10月28日在线发表于国际学术期刊《自然—方法学》。  研究人员介绍,双光子显微镜是在散射介质中成像的主要技术,通常可提供约10–30 Hz的帧采集速率。 

LaVision双光子显微镜无损伤无标记THG成像(二)

主要结果Fig. 1.无标记活体大脑的三次谐波显微成像(A)脑组织THG成像的epidetection几何学图示。插图:THG原理。注意基质中没有光学激发发生。(B) 树突处的聚焦激光束。通过将激光聚焦体积设定到树突直径的几倍大小,可以获得部分相匹配,显著的THG信号将会产生。(C)细胞

LaVision双光子显微镜无损伤无标记THG成像(一)

Label-free live brain imaging and targeted patching with third-harmonic generation microscopyStefan Wittea,b,1, Adrian Negreana,b,c, Johannes C. Lodde

多光子显微镜成像:无标记成像在发育生物学中的应用

光学成像可用于发育生物学,从而了解生物体的形成、揭示组织再生机制、认识并管理先天性缺陷和胚胎衰竭等。其中最受关注的两个问题:一是心脏在早期发育中会发生剧烈的形态变化,其潜在功能和生物力学方面仍有待研究;二是中枢神经系统发育异常会导致先天性的疾病,所以需要从动力学、功能和生物力学等方面对大脑发

显微镜里,单光子、双光子显微镜的区别

这个以前解释过,单光子就是通常的荧光激发方式,一个光子激发一个荧光分子发光,荧光波长比激发波长稍微长一些;双光子就是用两个光子激发一个荧光分子,激发光子能量小于荧光光子能量,因此激发波长长于荧光波长。现在公认的双光子激发的用途:1. 用于用到红外激发,穿透深度要高于单光子激发,2. 用于需要更高的激

双光子显微镜简介

双光子荧光显微镜是结合了激光扫描共聚焦显微镜和双光子激发技术的一种新技术。双光子激发的基本原理是:在高光子密度的情况下,荧光分子可以同时吸收 2 个长波长的光子,在经过一个很短的所谓激发态寿命的时间后,发射出一个波长较短的光子;其效果和使用一个波长为长波长一半的光子去激发荧光分子是相同的。双光子

关于多光子激发成像技术特点的概述

  Periasamy 和 Skoglund 等比较了相同光学配置下,双光子激光扫描显微镜和共聚焦扫描显微镜 [4]对非洲蟾蜍囊胚以及神经轴胚体细胞的成像能力。 研究结果表明,双光子激发成像穿透深度大、受细胞的固有荧光影响小。 因而 ,双光子提供了研究细胞内动力学、物质空间分布及结构的最佳方法。与荧

LaVision双光子显微镜亚细胞水平的深层组织成像(二)

系统性能和Ti:Sa与OPO激光的同时使用    为了同时获取样品Ti:Sa和OPO的激发,一个分光器将Ti:Sa激光分解为泵浦OPO光束和直接成像光束(Figure 1a). 分光比例取决于足够激发所需的光亮,先后依赖于样品特征(光密度,连续性和荧光团吸收截面)和想要的成像深度。在实际应用

LaVision双光子显微镜亚细胞水平的深层组织成像(五)

结论    这些结果表明红外双光子和二次谐波产生显微成像对于无毒害的时间分辨的细胞行为调查的深层组织成像尤其有利。作为与其它脉冲飞秒激光系统相比的优势,如Ch:forsterite (1230 nm) 和 Fianium fiber (1064 nm) 激光器,OPO产生的波长是可调谐的

Lavision双光子共聚焦显微镜应用:毛囊再生过程活体成像

组织的发生与再生依赖于细胞-细胞间相互作用和指向干细胞的信号以及它们的直接增殖。但是,引导组织适当再生的细胞行为还没有被很好的理解。运用一种新的,非侵入的双光子成像技术,我们研究了活鼠随时间推移的生理性毛囊再生。通过这种方法,我们监测了真皮层干细胞和它们的后代在生理性毛囊再生过程中的行为,并指出了间

LaVision双光子显微镜亚细胞水平的深层组织成像(四)

Figure 4.IR-MPM的光漂白,光毒性和组织穿透性. (a)以75mW能量的760, 880, and 1100 nm 激发波长连续扫描的释放光的下降时测量的DsRed2光漂白。样品被进行250次连续扫描,释放光强度以整个扫描区域的平均像素强度量化,并对首幅图像强度归一化。虚线表明了

LaVision双光子显微镜亚细胞水平的深层组织成像(三)

Figure 2 NIR和IR双光子激发和释放光谱。通过在同一焦平面对不同波长的Ti:Sa激光和OPO激光获取多幅图像并对扫描间的能量强度和漂白进行校正后的激发光谱。为获取红色和内在荧光团以及SHG的释放光谱,信号通过物镜,光谱仪和CCD相机检测。 (a) 自然状态下,SDS-PAGE前后的

LaVision双光子显微镜亚细胞水平的深层组织成像(一)

红外双(多)光子显微镜:亚细胞水平的深层组织成像Volker Andresen1,2, Stephanie Alexander1, Wolfgang-Moritz Heupel1, Markus Hirschberg1, Robert M Hoffman3 and Peter Friedl1,4Cu