蛋白聚集的机理

蛋白质聚集通常是通过一系列过程实现,首先是蛋白内部结构的变化导致形成二聚体或寡聚体,随后聚集体生长,最终形成亚可见或可见的颗粒。1. 初始聚集/成核蛋白质存在一定固有的构象波动或局部结构扰动,这些结构的变动可能会导致蛋白质中具有聚集倾向的序列或“热点(hot spot)”被暴露,进而使其与另外的蛋白质结合形成二聚体和/或寡聚体,这即是最初形成聚集体,也被称为成核。其中这些热点可能会位于蛋白质的不同区域,如CDR1, Fab, Fc, CH2 或CH3等。蛋白质结构的扰动可能会由不良的溶剂条件如低pH、有机溶剂或压力条件等因素引起。因此,这些聚集体的初始成核速率可能与蛋白质构象稳定性或灵活性相关。除此之外,非原有的蛋白寡聚体也会成为初始聚集的核,这些寡聚体可以是二聚、三聚,乃至更高阶的聚集体。这些聚集体可以通过分子间的相互作用而形成。对于结构扰动导致的聚集或者解折叠导致的聚集,单体分子被认为是成核的关键因素。尽管在蛋白质聚集过程中......阅读全文

蛋白聚集的机理

蛋白质聚集通常是通过一系列过程实现,首先是蛋白内部结构的变化导致形成二聚体或寡聚体,随后聚集体生长,最终形成亚可见或可见的颗粒。1. 初始聚集/成核蛋白质存在一定固有的构象波动或局部结构扰动,这些结构的变动可能会导致蛋白质中具有聚集倾向的序列或“热点(hot spot)”被暴露,进而使其与另外的蛋白

Cell:热休克诱发细胞内蛋白质聚集的分子机理

当细胞暴露于较高非致死性的温度下时,细胞内的蛋白质聚集体就会形成,这似乎是对压力产生反应的一种表现形式,但损伤蛋白的积累似乎并不会在形成过程中被破坏;近日刊登在杂志Cell上的一项研究论文中,来自芝加哥大学和哈佛大学的研究人员通过研究发现,当细胞回归到正常温度下时,这种蛋白聚集可以被完全逆转恢复,聚

Cell:热休克诱发细胞内蛋白质聚集的分子机理

  当细胞暴露于较高非致死性的温度下时,细胞内的蛋白质聚集体就会形成,这似乎是对压力产生反应的一种表现形式,但损伤蛋白的积累似乎并不会在形成过程中被破坏;近日刊登在国际杂志Cell上的一项研究论文中,来自芝加哥大学和哈佛大学的研究人员通过研究发现,当细胞回归到正常温度下时,这种蛋白聚集可以被完全逆转

剪切诱导血小板聚集及其机理研究

导言       在动脉血栓性疾病的病理过程中,血小板活化是重要的始动因素。有许多物质,如凝血酶、肾上腺素等可导致血小板的活化和聚集。近年来研究发现,血流中单纯的高剪切应力也可以诱导血小板聚集。这不但对于存在高剪切应力的血管,如小动脉,动脉痉挛和动脉硬化造成的局部狭窄区的血栓形成有特别重要的意义

蛋白聚集体的检测

1. 可溶聚集体最小的可溶聚集体是二聚体,可溶聚集体的大小上限则因蛋白质和溶液条件而异。这些可溶的蛋白聚集体,无论是通过物理相互作用还是化学修饰,通常可以用SEC-HPLC检测。该方法的局限在于样品在层析柱中的稀释可能会导致聚集体的解离、不同蛋白质需要不同的流动相、同时流动相或高压也可能会诱导蛋白质

影响蛋白质聚集的因素

1. 蛋白结构a) 蛋白质的一级结构及疏水氨基酸的相对数目对蛋白质的聚集速率和聚集体的稳定性有较大的影响。疏水氨基酸会形成聚集倾向区域(aggregation-prone region),在特定位置引入一个新的或不同的疏水氨基酸会显著加快蛋白聚集速率。b) 糖基化对于许多蛋白质的稳定性具有重要意义,

聚集蛋白聚糖的基本信息

蛋白聚糖(proteoglycan,PG)是一类特殊的糖蛋白,由一条或多条糖胺聚糖和一个核心蛋白共价链接而成。蛋白聚糖除含糖胺聚糖链外,尚有一些N—或(和)O—链接的寡糖链。蛋白聚糖不仅分布于细胞外基质,也存在于细胞表面以及细胞内的分泌颗粒中。中文名称聚集蛋白聚糖英文名称aggrecan定  义最初

什么是蛋白聚集体的控制?

1. 移除或修饰热点(hot spot)蛋白质一级序列及其高阶结构可以决定蛋白质的聚集倾向,移除或修饰聚集体热点(易聚集倾向序列)可以减缓蛋白质的聚集。可以通过分析蛋白质及疏水表面来实现。常常一个点突变可有效减少蛋白质的聚集。此外,通过连接亲水结构来屏蔽热点区域的聚集也可以减少蛋白质聚集。如PEG化

影响蛋白质聚集的因素有哪些?

1. 蛋白结构a) 蛋白质的一级结构及疏水氨基酸的相对数目对蛋白质的聚集速率和聚集体的稳定性有较大的影响。疏水氨基酸会形成聚集倾向区域(aggregation-prone region),在特定位置引入一个新的或不同的疏水氨基酸会显著加快蛋白聚集速率。b) 糖基化对于许多蛋白质的稳定性具有重要意义,

关于蛋白聚糖的聚集体的介绍

  前面述及软骨可聚蛋白聚糖能以HA分子为主干形成典型的蛋白聚糖聚集体(proteoglycan aggregate)。每一可聚蛋白聚糖分子(平均Mr~250万)含KS链(Mr1万~1.5万)约50条,CS链(Mr2万~3万)约100条以及若干条O-连接寡糖链,它们分布在核心蛋白(Mr20万~30万

黏蛋白的糖基化和聚集的介绍

  黏蛋白基因编码粘蛋白单体被合成为杆状核粘蛋白核心是翻译后由异常丰富改性的糖基化。  粘蛋白的致密“糖衣”给他们相当保水能力,也使它们耐蛋白水解作用,这可能是在维持重要粘膜障碍。  黏蛋白的分泌与分子质量约为1 10万大蛋白质的块状集合体。内的这些聚集体,单体被相互连接大多是由非共价的相互作用,尽

Nature:揭示一种阻止蛋白聚集物在线粒体中聚集的新机制

  蛋白聚集物对线粒体功能是有害的,因而会破坏向它们的宿主细胞提供化学能。在一项新的研究中,来自德国慕尼黑大学等研究机构的研究人员描述了一种阻止这些蛋白聚集物在线粒体中聚集的蛋白复合物。相关研究结果近期发表在Nature期刊上,论文标题为“Structure and function of Vms1

揭示帕金森病中蛋白聚集的秘密:NEMO蛋白的关键作用

神经退行性疾病,如帕金森病或阿尔茨海默病,与大脑中蛋白质聚集的沉积有关。当细胞废物清除系统存在缺陷或超负荷时,这些聚集物会积累。一种主要与免疫系统信号传导过程相关的蛋白质NEMO可以防止帕金森病中发生的蛋白质聚集物的沉积。现在,由博鲁姆大学(Ruhr University Bochum)领导的研究团

Nature:揭示伴侣蛋白ClpB清理有毒蛋白聚集物机制

  细胞如何解开聚集在一起的蛋白?在一项新的研究中,来自荷兰国家原子分子研究所(AMOLF)和德国癌症研究中心的研究人员如今发现伴侣蛋白ClpB可强行拉开蛋白链中暴露的环状结构(loop),随后将它们从蛋白聚集物中拉取出来。相关研究结果于2020年1月29日在线发表在Nature期刊上,论文标题为“

揭示tau蛋白聚集体如何损害大脑

  在患有阿尔茨海默病、大多数形式的痴呆或脑震荡相关综合征(即慢性创伤性脑病,CTE)的患者大脑深处,你会发现一个常见的可疑罪魁祸首:像缠绕线球的tau蛋白聚集体沉积现象。以这种tau蛋白聚集体异常沉积为特征的神经退行性疾病统称为tau蛋白病(tauopathies)。虽然早在一个世纪以前,科学家们

胃蛋白酶原的代谢机理

通常情况下,约有1%的PG透过胃黏膜毛细血管进入血液循环,进入血液循环的PG在血液中非常稳定。血清PG I和PG II反映胃黏膜腺体和细胞的数量,也间接反映胃黏膜不同部位的分泌功能。当胃黏膜发生病理变化时,血清PG含量也随之改变。因此,监测血清中PG的浓度可以作为监测胃黏膜状态的手段。胃蛋白酶原是由

蛋白酶水解蛋白质的机理

应该从酶的结构和酶的作用机理解释。胰蛋白酶的作用中心有Zn2+,Arg127的胍基和Glu270的羧基组成。催化的第一步反应是活化水分子的亲核氧原子攻击底物的羰基碳原子,同时,Glu270作为广义碱,从Zn2+—结合水吸取一个质子,形成一个带负电的四面体过度中间物,通过Zn2+和Arg127带正电的

PNAS:研究揭示β淀粉样蛋白聚集体结构

  宾汉顿大学(Binghamton University)和科罗拉多丹佛大学(University of Colorado Denver)的研究人员组成的一个研究小组,首次绘制了一种导致阿尔茨海默症加速发展的侵略性蛋白质聚合体的分子结构。  宾汉顿大学生物物理化学助理教授Wei Qiang说:"大

蛋白聚集可调控生物体衰老与长寿

  记者从安徽农业大学了解到,该校生命科学学院计山明教授研究发现蛋白聚集具有正向生物学功能,能够调控生物体的衰老与长寿。该项成果日前发表在国际学术期刊《分子细胞》上。  已有研究表明,许多蛋白含有低复杂度结构域。该结构域不仅可以通过液—液相变形式调控蛋白“自我聚集”状态,同时也是阿尔茨海默症、亨廷顿

突触核蛋白的硝基化聚集物具有细胞毒性

生物物理所发现突触核蛋白a-synuclein的硝基化聚集物具有细胞毒性  我国已经进入老龄化社会,神经退行性疾病给个人、家庭、社会造成了沉重的经济和精神负担。神经元的变性死亡是神经退行性疾病的重要病理机制。   中国科学院生物物理研究所脑与认知科学国家重点实验室赫荣乔研究组在蛋白质的硝基化修饰方

《Cell》子刊:逆转蛋白质聚集的天然细胞机制

  你在平底锅里打一颗鸡蛋,只需几分钟蛋清就会从透明的粘液状态变成富有弹性的白色固体,蛋黄也慢慢变硬,一系列生理和化学变化导致鸡蛋内化学键断裂、蛋白质发生聚集和重塑,你得到了一颗不可逆的固态煎蛋。  从生鸡蛋到熟煎蛋容易,但是,从熟煎蛋到生鸡蛋却不可逆。特拉维夫大学(Tel Aviv Univers

概述抗衰蛋白FN的作用机理

  研究认为,细胞内外微循环障碍、细胞凋亡、免疫系统紊乱、自由基损伤等都会造成细胞衰老,进而影响机体衰老。FN从衰老根源细胞出发,有效缓解细胞衰老 [1] 。  细胞内外微循环可供给细胞氧气、营养物质及清除废物,微循环障碍作为衰老象征的结果与标志,同时在促进器官、组织和整体衰老中起主要作用。纤连蛋白

关于钙调蛋白的作用机理介绍

  钙调蛋白分子本身无酶的活性,在无Ca2+的情况下,也无生物学活性;但在胞内Ca2+结合后,钙调蛋白发生构型上的变化,暴露疏水区,疏水区与依赖于 钙调蛋白的靶酶相互作用而调节酶的活性。 [4] 作为一个多功能的Ca2+传感器,钙调蛋白能够应对不同Ca2+浓度。结合Ca2+后,钙调蛋白会发生构象转变

角蛋白酶的降解机理

微生物降解角蛋白的机理各不相同,因此降解过程中的产物也不尽相同。某些真菌还原双硫键是通过菌丝体表面所分泌的亚硫酸盐及其产生的酸性环境;链霉菌则是通过产生胞内还原酶 然而,不溶于水的角蛋白只能以颗粒的形式存在于胞外。因此,双硫键的还原只能发生在代谢能力强的整体细胞外面,最有可能发生在细胞表面的胞联氧化

角蛋白酶的降解机理

微生物降解角蛋白的机理各不相同,因此降解过程中的产物也不尽相同。某些真菌还原双硫键是通过菌丝体表面所分泌的亚硫酸盐及其产生的酸性环境;链霉菌则是通过产生胞内还原酶 然而,不溶于水的角蛋白只能以颗粒的形式存在于胞外。因此,双硫键的还原只能发生在代谢能力强的整体细胞外面,最有可能发生在细胞表面的胞联氧化

顶体蛋白酶的作用机理

当卵子和精子都成功地被输送到受精部位时,精子的头部一旦接触到卵子表面时,位于其头部顶端的细胞器之一的顶体就随之发生顶体反应,由顶体部分伸长为顶体丝,并分泌出多种酶蛋白,即顶体蛋白,顶体蛋白溶解卵膜,使精子头部穿透卵的放射冠和透明带,而进入卵子,完成受精过程。

概述蓖麻毒蛋白的作用机理

  一个蓖麻毒蛋白分子进入细胞内,就足以使整个细胞的蛋白质合成完全停止而死亡。蓖麻毒素的毒性多肽是A链,A链具有使核糖体失活的能力。B链上含有两个半乳糖结合部位,能与细胞上含半乳糖基的糖蛋白或糖酯结合,蓖麻毒蛋白通过B链连接在细胞表面含有半乳糖末端的糖蛋白和脂蛋白上进入细胞,A链在B链的帮助下,容易

上海药物所抗微观蛋白聚集研究取得进展

  微管具有多种重要的生物学功能,其中非常重要的生物功能之一是以纺锤体的形式参与细胞的有丝分裂。因此,破坏肿瘤细胞内的微管蛋白聚集与解聚,能够明显的影响到肿瘤细胞的有丝分裂过程,从而达到抑制肿瘤细胞生长的效果。由于微管在细胞生长和发育过程中的重要作用,使得微管成为比较理想的抗肿瘤药物

糖胺聚糖调控帕金森病致病蛋白αsyn聚集的分子机制

  α-突触核蛋白(α-syn)作为帕金森病(PD)、路易体痴呆(DLB)、多系统萎缩(MSA)等神经退行性疾病的关键致病蛋白,具有在不同条件下形成不同结构和病理毒性的淀粉样纤维聚集的能力。近期研究发现,来自MSA,PD及DLB患者脑中的α-syn病理纤维结构均含有不同的化学配体通过与附近氨基酸残基

Cell:发现抑制阿尔兹海默症蛋白聚集的通路

  圣犹大儿童研究医院的科学家们发现了一种像洗车一样的方法,可以防止与阿尔兹海默症相关的有毒蛋白质的积聚。该报告于近日发表在Cell。  这项在小鼠阿尔兹海默症模型中进行的研究为治疗这种慢性神经退行性疾病提供了一个可能的新方法,它是美国的第六大死因。这种新发现的途径也有助于调节炎症,所以这项发现可能