Antpedia LOGO WIKI资讯

遗传发育所在植物着丝粒形成及其表观遗传学研究中获进展

植物着丝粒含有大量的重复序列和反转座子,结构复杂并受表观遗传学调控。中国科学院遗传与发育生物学研究所韩方普研究组长期从事植物着丝粒的表观遗传学研究,曾在植物中首次发现着丝粒的失活现象并初步分析失活着丝粒的调控机制可能与DNA甲基化状态相关。由于着丝粒的特殊表观遗传学调控机制,植物着丝粒的DNA序列暂不能直接用于植物人工染色体的构建,这也是植物人工染色体构建方法不同于人类等人工染色体的策略。为了更好地研究植物着丝粒的结构与功能,需要揭示着丝粒是如何形成的?着丝粒功能分子标记如CENH3和CENPC是如何组装到着丝粒区和新着丝粒区?组蛋白磷酸化的信号是如何起始的并保证染色体正确形成取向且正确分离?玉米同源染色体配对起始为什么发生在有活性的着丝粒区(Zhang J et al. Plant Cell, 2013)? 在植物新着丝粒形成方面,韩方普研究组取得了系列重要进展。利用玉米3号染色体特殊材料,他们发现来自3号染色体的片段......阅读全文

一个与人类癌症等疾病相关的区域竟然被科学家忽视15年

  15年前,科学家宣布,人类基因组图谱绘制完成。但我很遗憾地告诉各位,这不是事实。   如果你曾被误导,那是因为长期以来,很多科学家自身也忽视了人类DNA中最后几个未组装的区域,它们主要由看起来不像基因的短回文重复序列组成。   “这片巨大的空白仍然存在。”加州大学圣克鲁兹分校的基因组研究员卡

研究揭示表观遗传因子CENP-A介导着丝粒功能的机制

  着丝粒是染色质上一段结构与功能高度特化的区域,在细胞分裂期指导动粒的组装,并在纺锤体的牵拉下实现姐妹染色单体的分离。CENP-A是组蛋白H3在着丝粒区的变体,是着丝粒区建立和发挥功能的关键性的表观遗传因子。CENP-A通过招募下游CCAN蛋白家族发挥其功能。CENP-N是CCAN蛋白家族中最重要

染色体核型分析材料、原理和步骤

实验一 染色体核型分析 一、实验原理: 有丝分裂间期:染色质 有丝分裂期:染色体 各种生物染色体的形态,结构和数目都是相对稳定的。每一生物细胞内特定的染色体组成叫染色体组型。染色体组型分析也称核型分析。 从染色体玻片标本和染色体照片的对比分析,进行染色体分组,并对组内

人体染色体概述

   一 人体染色体数目、结构和形态  人类体细胞具有46条染色体,其中44条(22对)为常染色体,另两条与性别分化有关,为性染色体。性染色体在女性为XX,在男性为XY。生殖细胞中卵细胞和精子各有23条染色体,分别为22+X和22+Y。  染色体在细胞周期中经历着凝缩(conde

减数分裂着丝粒配对研究取得新进展

  减数分裂是真核生物配子形成过程中一种特殊的细胞分裂方式,是生殖细胞产生的前提。同源染色体之间正确的识别、配对是减数分裂过程中染色体相互作用的开始,对于后续染色体的正确分离至关重要。目前,同源染色体相互精确识别并完成配对的过程和分子机理尚不十分清楚。  中国科学院遗传与发育生物学研究所韩方普研究组

Cell:新技术解决细胞分裂争议

  美国Stowers医学研究所的科学家开发了一种在复合体中计数荧光分子的新方法,并通过该方法解决了细胞生物学界的热点争议,即DNA如何组成着丝粒。这一研究成果有助于人们理解细胞分裂机制,和细胞避免分裂后出现染色体数异常的方式。   着丝粒是介导染色体分离的特殊结构,位于姐妹染色单体“X”型交汇点

着丝粒功能建立与维持关键因子的装配机制被揭示

  Developmental Cell 期刊于2014年12月31日在线发表了中国科学院生物物理研究所李国红课题组研究着丝粒区域染色质特有的细胞周期依赖性装配机制的最新成果,为长期困扰着丝粒生物学领域的CENP-A装配机制问题提供了答案。  着丝粒是一段结构与功能高度特化的染色质区域,在细胞分裂期

遗传发育所在植物着丝粒研究中取进展

  基因组测序及解析以及新技术的广泛应用,让人们得以继续探索着丝粒和端粒等染色体上高度重复区域在生命活动中的新功能。植物着丝粒含有丰富的重复序列,如串联重复序列(Satellite)和反转座子(Retrotransposon),参与基因组空间构象和细胞分裂等重要的生物学功能。然而不同物种双着丝粒染色

植物着丝粒研究取得进展

  基因组测序及解析以及新技术的广泛应用,让人们得以继续探索着丝粒和端粒等染色体上高度重复区域在生命活动中的新功能。植物着丝粒含有丰富的重复序列,如串联重复序列(Satellite)和反转座子(Retrotransposon),参与基因组空间构象和细胞分裂等重要的生物学功能。然而不同物种双着丝粒染色

Science雄文颠覆教科书!自私的基因改写遗传学基本定律

  每个人的体细胞内都有23对染色体,一半来自父亲,一半来自母亲。我们又会将这些染色体通过减数分裂,让其中一半进入生殖细胞,传给下一代。依照教科书上的遗传学经典定律,一对染色体的分配过程是随机的,每一条染色体都有50%的机会,非常公平。  但随着分子生物学的发展,人们对减数分裂有了更详尽的认识。科学

染色体的标本制作及其组型实验

在真核生物中, 染色体的数量和形态具有物种的特异性一直可以作为此物种分类的基本依据之一。染色体作为遗传物质-DNA的载体, 对生物的遗传、变异、进化和个体发生, 以及细胞的增殖和生理过程的平衡控制等都具有十分重要的意义。每一个物种的细胞一般都有一定数目、形状和大小的染色体。将体细胞核中全部染

染色体核型分析

一、实验目的 掌握染色体核型分析的各种数据指标,学习染色体核型分析的基本方法。二、实验原理 染色体核型是指将动物、植物等的某一个体或某一分类群(亚种、种、属等)的体细胞整套染色体按它们相对恒定的特征排列起来的图像。核型分析通常需辨析每条染色体的特征。它包括染色体的数目、长度、

遗传发育所水稻减数分裂同源染色体分离机制研究取得进展

  与有丝分裂不同的是,减数分裂染色体复制一次,而细胞分裂两次。这种质的差异与染色体臂上及着丝粒处黏着蛋白的分步消失有直接关系。染色体臂上黏着蛋白在减数第一次分裂消失是保证同源染色体分离的前提;而着丝粒处黏着蛋白的维持是保证姊妹染色单体在减数第二次分裂才相互分开。shugoshin是一

遗传发育所在植物着丝粒表观遗传学研究中取得进展

  植物着丝粒含有大量的重复序列和反转座子,结构复杂并受表观遗传学调控。中科院遗传与发育生物学研究所韩方普实验室长期从事植物着丝粒的表观遗传学研究,曾在植物中首次发现着丝粒的失活现象并初步分析失活着丝粒的调控机制。   由于着丝粒的特殊表观遗传学调控机制,植物着丝粒的DNA序列暂不能直接用于植物人

Cell揭开细胞分裂的秘密

  从受精卵到成年人,人类细胞需要经历的分裂次数可以说是天文数字。每一次分裂时,母细胞都必须将DNA精确分配给两个子细胞。而着丝粒的完整性是细胞成功分裂的关键。  着丝粒是染色体上的一个特殊DNA区域,是纺锤丝微管的附着之处,也是姐妹染色单体在分开前相互连接的地方。分离染色体的微管要识别着丝粒,需要

果蝇唾腺染色体制片技术

实验概要1、练习分离果蝇幼虫唾腺的技术,学习唾腺染色体的制片方法; 2、观察果蝇唾腺的形态学及遗传学特征; 3、了解体细胞染色体配对现象;实验原理本世纪初,D.Kostoff用压片法首先在D.melanogaster果蝇幼虫的唾液腺细胞核中发现了特别巨大的染色体—唾液腺染色体(s

细胞学:如何用酵母细胞检测遗传感染!

DIC显微术中的酿酒酵母细胞。图片来源:维基百科。研究酵母细胞的ETH研究人员发现了一种从病原体或环境污染中检测外来遗传物质并使其无害的新机制。在其悠久的历史过程中,细菌已经形成了一种有效的免疫系统,可以检测和抵御来自病毒或竞争细菌的入侵遗传物质。在单细胞生物体中这种“先天”免疫防御的一个要素是CR

小白鼠骨髓细胞染色体显带(C带)技术介绍

实验原理染色体显带(Banding)技术是一种用染料对染色体进行分化染色的方法。就是将染色体经酸、碱、温度等处理后,再以染料染色,或单用某些荧光染料就可以染出深浅不同或明暗各异的带纹的纵向结构。此项技术发明于本上世纪六十年代末、七十年代初,发展至今已是非常成熟。1971年在巴黎召开第四次国际人类遗传

小白鼠骨髓细胞染色体显带(C带)技术

实验概要1、了解染色体显带技术的基本知识; 2、学习小白鼠骨髓细胞染色体显带(C带)技术。实验原理染色体显带(Banding)技术是一种用染料对染色体进行分化染色的方法。就是将染色体经酸、碱、温度等处理后,再以染料染色,或单用某些荧光染料就可以染出深浅不同或明暗各异的带纹的纵向结构。此项技

小白鼠骨髓细胞染色体显带(C带)技术

实验原理染色体显带(Banding)技术是一种用染料对染色体进行分化染色的方法。就是将染色体经酸、碱、温度等处理后,再以染料染色,或单用某些荧光染料就可以染出深浅不同或明暗各异的带纹的纵向结构。此项技术发明于本上世纪六十年代末、七十年代初,发展至今已是非常成熟。1971年在巴黎召开第四次国际人类遗传

9月15日《自然》杂志内容精选

    封面故事: 科学家被控过失杀人  2009年4月6日,意大利中部Abruzzo地区发生6.3级地震,对几个中世纪山区城镇造成严重损害。超过300人失去了生命,大约1500人受伤,65000人短时间无家可归。今年早些时候,6名科学家和1名政府官员因未能评估和告知地震的潜在风险而

程祝宽研究组PlantCell揭秘细胞分裂

  来自中科院遗传与发育生物学研究所,云南农业大学的研究人员利用图位克隆的方法,在水稻中克隆了植物中首个Bub1同源基因BRK1(Bub1- related kinase1),为解析细胞分裂过程中纺锤体组装提出了新观点,相关研究结果发表在12月15日在Plant Cell杂志上。   领导这一

SENP6对着丝粒特异性组蛋白CENP-A定位的调控机制

  中国科学院生物物理研究所朱冰课题组题为SENP6-mediated M18BP1 deSUMOylation regulates CENP-A centromeric localization 的研究论文于2019年1月10日在Cell Research 杂志在线发表。该研究发现去SUMO化酶S

Science揭开细胞分裂的秘密

  细胞分裂是生命的基础,母细胞必须在这一过程中将DNA精确分配给两个子细胞。而染色体上的着丝粒是细胞成功分裂的关键,这个特殊的DNA区域是纺锤丝微管的附着之处,也是姐妹染色单体相互连接的地方。着丝粒出现问题会导致子细胞染色体异常,引发唐氏综合症等疾病。  微管识别着丝粒需要该区域富含一种关键的蛋白

遗传发育所在纺锤体组装研究中取得重要进展

  在细胞分裂过程中纺锤丝与着丝粒起初会以随机方式相连接,使得前中期存在许多错误的连接方式。比如一个着丝粒同时受到来自相反方向的纺锤丝牵引,这种现象被称作merotelic连接。如果这些错误的连接不被纠正,将会导致着丝粒间的拉力异常,引起染色体的不同步分离。因此,真核生物采用了一种监控机制来延迟染色

遗传发育所在植物染色体分离和取向研究中取得进展

  染色体正确分离和精确的取向是保证生物体的发育、基因组的稳定及配子正确形成的前提。植物细胞有丝分裂在中期染色体形成双取向(bi-orientation),减数分裂I同源染色体配对形成二价体染色体的取向是单取向(mono-orientation),减数分裂II中期染色体形成类似有丝分裂的染色体取向。

研究发展出新型三维基因组成像系统

  4月7日,《细胞研究》发表了中国科学院生物物理研究所刘光慧课题组和徐涛课题组,以及中科院动物研究所曲静课题组合作的题为Visualization of Aging-Associated Chromatin Alterations with an Engineered TALE System的研究

研究发展出新型三维基因组成像系统

  4月7日,《细胞研究》发表了中国科学院生物物理研究所刘光慧课题组和徐涛课题组,以及中科院动物研究所曲静课题组合作的题为Visualization of Aging-Associated Chromatin Alterations with an Engineered TALE System的研究

人体染色体畸变分析(三)

  (B)、正常配受子精结果(C)及某些具有代表性的核型(D)  6.双着丝粒染色体 两条染色体断裂后,具有着丝粒两个片段相连接,即形成一个双着丝粒染色体(图2-3)。两个无着丝粒片段也可以连接成一个无着丝粒片段,但后者通常在细胞分裂时丢失。双着丝粒染色体常见于电离辐射后,因此在辐射遗传学

Cell Res封面文章:新型三维基因组成像系统

  来自中科院生物物理研究所,中科院动物研究所等处的研究人员发展了一种新型三维基因组活细胞成像工具TTALE,并利用该系统实现了对端粒缩短和着丝粒构象变化等衰老伴随的染色质结构改变的精准成像。此外,该研究发现了核仁区核糖体DNA拷贝数减少可以作为人类衰老的新型分子标志物。上述成果为在遗传和表观遗传水