化学所在卟啉超分子纳米结构的可控组装研究取得新进展
利用表面活性剂辅助的自组装技术实现了卟啉纳米结构的可控组装和理化功能的调控 利用自组装技术在超分子层上实现有机功能分子的可控自组装,并进一步实现其功能的调控,是目前超分子化学、纳米科技、材料科学等领域的重要课题。卟啉化合物作为一类重要的功能染料分子,由于其独特平面型分子骨架特征、良好的共轭体系等特征而成为超分子化学中最为优良的构筑基元之一。目前研究者已经在卟啉分子纳米结构的逐级组装方面取得了丰硕的研究成果和积累。表面活性剂辅助的组装技术融合了胶体化学与分子组装的优点而备受关注。考虑到卟啉类化合物在非极性或小极性溶剂中往往具有良好的溶解性,其在油/水体系中的组装可能为研究者提供卟啉分子组装更为丰富的信息。 近几年,在国家自然科学基金委、科技部和中国科学院的大力支持下,中国科学院化学研究所胶体、界面与化学热力学院重点实验室一直致力于功能单元的设计与界面的超分子组装。最近,研究人员在金属卟啉的可控组装、......阅读全文
化学所用外消旋分子组装手性结构识别与检测手性分子
手性分子与手性结构广泛存在于自然界中,手性分子的合成与拆分,手性分子识别以及手性结构的形成与功能化是分子化学、超分子化学的重要课题之一。在国家自然科学基金委和科技部的大力支持下,中国科学院化学研究所胶体界面与化学热力学院重点实验室的科研人员,在超分子手性、手性纳米结构的构建以及分子识别方面取得了
化学所超分子手性组装研究获进展
作为三维物体的基本属性之一,手性广泛存在于自然界中,大到宇宙中的银河系、小到微观的分子、粒子体系。对于手性的研究不仅有助于我们加深对地球生命甚至是宇宙起源的认识,而且在生命科学、制药以及材料科学等领域也有着非常重要的现实作用。在手性研究中,除了分子层次的手性以外,分子以上层次尤其是纳米尺度上的手
手性超分子多层级自组装研究获进展
手性超分子自组装结构因展现出超越非手性结构的独特性质,广泛应用于光电子学、医学、仿生学及界面科学等领域。但目前,学界对超分子手性产生与跨尺度传递机制的理解尚不充分。因此,大规模可控构筑多层级手性超分子结构一直是该领域的研究难点。近期,中国科学院力学研究所研究员袁泉子团队联合国家纳米科学中心研究员施兴
手性超分子组装及其圆偏振发光应用方面取得进展
近年来,圆偏振发光材料受到极大关注,成为手性发光材料领域新的研究热点。圆偏振发光(CPL)是指手性发光体系发射出具有差异的左旋和右旋圆偏振光的现象。相较于研究基态手性结构信息的圆二色性(CD)不同,CPL反映的是手性发光体系的激发态结构信息,它在3D 显示、信息存储与处理、CPL 激光、生物探针
华东理工等构筑手性可逆调控自组装超分子体系
华东理工大学化学学院朱为宏教授和华东师范大学杨海波教授合作,在光控手性金属配位自组装体系的研究中获突破性进展,相关研究成果近日在线发表于国际学术期刊Chem (Cell的化学类姐妹刊)。 人工手性自组装体系一直是超分子化学和材料化学的前沿挑战性课题,常被用于模拟自然界生物大分子体系。但鉴于缺少
化学所在卟啉超分子纳米结构的可控组装研究取得新进展
利用表面活性剂辅助的自组装技术实现了卟啉纳米结构的可控组装和理化功能的调控 利用自组装技术在超分子层上实现有机功能分子的可控自组装,并进一步实现其功能的调控,是目前超分子化学、纳米科技、材料科学等领域的重要课题。卟啉化合物作为一类重要的功能染料分子,由于其独特平面型分子骨架特征、
手性超分子组装及其圆偏振发光应用研究新进展
近年来,圆偏振发光材料受到极大关注,成为手性发光材料领域新的研究热点。圆偏振发光(CPL)是指手性发光体系发射出具有差异的左旋和右旋圆偏振光的现象。相较于研究基态手性结构信息的圆二色性(CD)不同,CPL反映的是手性发光体系的激发态结构信息,它在3D 显示、信息存储与处理、CPL 激光、生物探针
聚焦“超分子组装”--建设“高分子结构与动力学”研究平台
鸡蛋煮熟后为何会凝固?肥皂为何能去除污物?如何精准控制材料的功能与性质……这些看似寻常的问题中蕴含着丰富的科学原理,是基础研究领域科学家们孜孜以求的课题。 11月21日至23日,美国工程院院士Edwin L. Thomas,欧洲科学院院士Egbert W. Meijer,以色列科学院、欧洲科
超分子自组装纳米粒为乳腺癌治疗带来曙光
原文地址:http://news.sciencenet.cn/htmlnews/2024/3/519402.shtm海南大学药学院副研究员周泱团队在乳腺癌治疗的研究与应用中取得新进展。他们通过联合递送光敏剂和免疫调节剂实现对肿瘤免疫微环境的时空调节和重塑,改善光动力治疗引起的免疫抑制微环境,实现免疫
化学所在短肽分子手性可控组装方面获进展
β-淀粉样蛋白多肽的核心识别序列—苯丙氨酸二肽不仅具有超强的自组装能力、易于化学修饰和生物降解等优点,还具有天然的手性特征。以苯丙氨酸二肽作为模仿生物体手性组装的简易模型,对于理解Aβ纤维的结构基础、构建超分子手性材料具有重要意义。 中国科学院化学研究所胶体、界面与化学热力学院重点实验室李峻
配位超分子自组装研究获突破
中山大学化学学院教授潘梅团队利用氨基功能化配体与钙盐组装,得到一种新颖的二维层状Ca-MOF。相关研究成果近日发表于《自然—通讯》。 近年来,超薄二维材料备受关注。超薄二维MOF由金属离子与有机配体通过配位键连接而成,且其厚度仅有几到几十个金属—有机配位层,使得这类材料在保留金属—有机框架结构
生物大分子纳米结构工程:从精确组装到精准生物传感
生物传感器是一类集成生物识别元件(如酶、抗体或核酸等)和物理、化学换能模块的器件(信号转导易与细胞中的信号转导混淆)。生物传感器已经广泛用于家庭监护和现场检测,目前的穿戴式和床边检测(POCT)生物传感研究可能对疾病监控模式产生深刻影响。然而,有别于均相反应体系,生物传感器本质上是一个异相界面反应过
什么是手性分子?
手性分子是指与其镜像不相同不能互相重合的具有一定构型或构象的分子。手性一词来源于希腊语“手”(Cheiro),由Cahn等提出用“手性”表达旋光性分子和其镜影不能相叠的立体形象的关系。手性等于左右手的关系,彼此不能互相重合。所有的手性分子都具有光学活性,同时所有具有光学活性的化合物的分子,都是手性分
什么是手性分子?
手性分子是指与其镜像不相同不能互相重合的具有一定构型或构象的分子。手性一词来源于希腊语“手”(Cheiro),由Cahn等提出用“手性”表达旋光性分子和其镜影不能相叠的立体形象的关系。手性等于左右手的关系,彼此不能互相重合。所有的手性分子都具有光学活性,同时所有具有光学活性的化合物的分子,都是手性分
手性分子的应用
获得手性分子的重要意义一 药物与人类的关系:构成生命体系的生物大分子大多数是以一种对映体形式存在的。故药物与其作用也是以手性的方式进行的,生物体的酶和细胞表面受体是手性的,故对外消旋药物的识别、消化和降解过程也是不同的。手性分子的来源自然界:糖类、氨基酸、生物破、萜类、 甾体化合物不对称有机合成反应
科学家首次用光改变人造超分子手性
据物理学家组织网7月11日(北京时间)报道,美国科学家首次研制出一种人造分子,可用一束光改变其手性,这种分子可应用于包括生物医学研究、国土安全和超高速通讯在内的太赫兹技术领域,相关研究发表在《自然·通讯》杂志上。 手性分子是化学中结构上镜像对称而又不能完全重合的分子。该类分子具有迥然不同的
苏州纳米构建金纳米棒@金纳米粒子手性螺旋超结构
等离子体纳米粒子及其组装结构因为优异的光学特性在纳米科技中具有广泛应用,如超材料、生物传感器、光电器件等。精准构建等离子体纳米结构对于光学特性的深入研究意义重大,而精确调控等离子体纳米粒子的表面功能性质则是进一步获得复杂自组装体系的关键。目前借助各种物理和化学方法,可在纳米粒子表面的一定区域范围
我国发展出界面超分子手性传递分子机理新方法
手性在自然界中无处不在。界面所具有的非中心对称性为分子在界面的聚集和组装过程产生对称性破缺创造了先天条件,因此相比于体相,研究界面手性传递、自组装手性动力学对于理解手性起源、探寻生命起源、制备手性材料具有重要意义。 界面手性超分子自组装是近年来备受瞩目的研究领域之一。它不仅与手性生命系统密切相关
第311次香山会议研讨功能超分子体系—自组装与纳米技术
以“功能超分子体系—自组装与纳米技术”为主题的第311次香山科学会议10月22日在北京举行。吉林大学沈家骢教授、中国科学院理化技术研究所佟振合研究员、清华大学张希教授、荷兰Twente大学David N. Reinhoudt教授、德国Mainz大学Helmut Ringsdorf教授担任会议执行主席
福建物构所镧系金属手性笼状超分子配位自组装研究获进展
镧系功能配合物在荧光探针、造影剂、磁性、超导材料等领域展现了良好的应用前景。目前绝大部分超分子自组装体系使用过渡金属离子作为导向基元,稀土离子的运用却相对稀少,主要是因为镧系金属离子的配位数和配位构型都复杂多变并且很难控制,从而给具有特定分子组成和几何构型的镧系功能配合物的溶液可控自组装带来极大
组装调控的超分子多色荧光体系
近日,华东理工大学化学与分子工程学院、费林加诺贝尔奖科学家联合研究中心曲大辉教授课题组在超分子化学调控化学发光的研究中取得了重要进展,相关研究成果发表在Nature Communications 上。 发光可控的荧光材料在生物成像、发光二极管、传感器以及光电器件等领域具有潜在的应用价值,如何实
一种用于构筑活性超分子组装体的简单的分子平台
受控的聚合方法,例如原子转移自由基聚合,已经通过赋予人造大分子相当的结构精确度而使聚合物化学发生了革命。通过开发具有各种组成和拓扑结构的均聚物和嵌段共聚物的简便制备方法,即活性聚合方法,给聚合物在太阳能电池制备,纳米光子器件以及生物医药方面的应用铺平了道路。在超分子聚合物化学领域,目前正在向精密
生物活性分子体内原位构筑超分子组装体研究获新进展
随着纳米生物技术和纳米医药的发展,生物活性分子体内原位构筑超分子组装体的概念越来越受人们的重视。实现对聚合物的可控组装调控,对改进材料在体内的生物效应和安全性,具有重大意义。但是,由于生物医用材料在体内的生物过程极其复杂,如何实现聚合物在病生理条件下的组装调控,是医用高分子领域极具挑战性的科学问
DNA自组装手性等离子体纳米结构方面取得进展
自然界中的手性现象广泛存在,诸如DNA和蛋白质等在分子水平的手性现象已经被人们所熟知。近年来,具有在可见光波段手性光学响应特性的等离子体金属纳米结构吸引了越来越多的关注。对手性等离子体纳米结构的制造与光学活性研究,催生了手性等离子光学新兴研究领域。虽然大量研究报道利用各向同性金属纳米基元组装手性
国家纳米中心用DNA折纸术组装纳米颗粒三维手性螺旋结构
如何能在纳米尺度上对材料结构进行精确的控制,形成具有特殊性能的聚集体,是当今科学界最具有挑战性的前沿课题之一。近年发展起来的DNA折纸术是一种独特的自下而上的自组装纳米技术,被用于制备多种尺寸、形貌的二维和三维纳米图案。DNA折纸纳米结构由于结构可设计性和空间
化学所发展出界面超分子手性传递分子机理研究新方法
手性在自然界中无处不在。界面所具有的非中心对称性为分子在界面的聚集和组装过程产生对称性破缺创造了先天条件,因此相比于体相,研究界面手性传递、自组装手性动力学对于探索手性起源、探寻生命起源、制备手性材料具有重要意义。 界面手性超分子自组装是近年来备受瞩目的研究领域之一。它与手性生命系统密切相关,
药物分子手性的意义
手性药物?指只含有单一对映体的药物为手性药物。手性药物是二十一世纪发展的重要方向手性似乎有些陌生又有些时髦,实际上手性在自然界是非常普遍的现象,在化学里就是一种同分异构现象。含有两个互为对映异构体的化合物称为手性化合物,其中仅含一个对映体的化合物称为光学纯手性化合物,分别含有这样化合物的药物称为手性
中国科大超分子自组装的表征研究获进展
1月8日,国际学术期刊《美国化学会志》在线发表了中国科学技术大学教授梁高林课题组题为Alkaline Phosphatase-Triggered Simultaneous Hydrogelation and Chemiluminescence 的研究成果,报道了用化学发光信号表征超分子自组装的成
分子超快成像研究获进展-实现普适性分子自层析成像
近日,中国科学院武汉物理与数学研究所柳晓军研究小组提出基于飞秒强激光与气相分子相互作用对分子结构进行层析成像的新方案,可以避免原子微分散射截面对分子结构信息提取的影响,成功从氮气分子的光电子谱中直接读取出分子核间距信息,首次演示了分子自层析成像方案的可行性。相关成果发表在《物理评论快报》(Phy
手性传感器识别法鉴别手性分子
手性传感器识别法具有简单快捷、高效灵敏和选择性高的特点。电化学传感器主要通过主体选择性键合客体分子引起传感器的电信号变化而实现手性识别;荧光传感器基于对映体分子和手性选择剂形成缔合物的荧光差异来实现识别。在压电传感器中,手性选择膜镀在石英晶体上,当手性分子与手性膜发生作用时,会引起石英晶体的质量和振