人造病毒突破基因治疗瓶颈

最近,西班牙巴塞罗那自治大学(UAB)生物技术和生物医学研究所纳米生物学部门的研究人员,在Antonio Villaverde的指导下,成功地制备了一种人造病毒——能够自组装并形成纳米颗粒的蛋白质,能够包围DNA片段,穿透细胞,以一种非常不同的方式到达细胞核,然后在那里释放治疗性DNA片段。这一成果是基因治疗所用病毒载体的一种替代物,没有生物学风险。相关研究结果发表在最近的国际生物科技顶级期刊《Trends in Biotechnology》。 基因治疗,是将具有治疗目的的基因插入到基因组中,需要一些载体将这些基因转移到细胞核。当转移这些基因时,一种可能性是使用病毒载体,但这并不能避免风险。因此,科学家们一直试图找到一种替代物。用这个作为他们的目标,新兴的纳米医学旨在用可调节纳米颗粒(可以将核酸和其他药物释放到靶细胞中)的形式,模仿病毒的活动。延伸阅读:基因治疗先驱回顾其突破性发现。 研究人员测试了各种各样的材料,其中蛋......阅读全文

病毒含有蛋白质吗

病毒主要由核酸和蛋白质外壳组成。病毒的生命活动很特殊,对细胞有绝对的依存性。其存在形式有二:一是细胞外形式,一是细胞内形式。存在于细胞外环境时,则不显复制活性,但保持感染活性,是病毒体或病毒颗粒形式。进入细胞内则解体释放出核酸分子(DNA或RNA),借细胞内环境的条件以独特的生命活动体系进行复制,是

纳米陷阱能清除冠状病毒

纳米陷阱艺术图,纳米陷阱的核心为黄色、磷脂壳为绿色和功能化粒子为红色,病毒蛋白外壳为灰色。图片来源:Huang Lab  美国芝加哥大学普利兹克分子工程学院研究人员设计了一种全新的、有潜力的新冠肺炎疗法:纳米颗粒可以在体内捕获新冠病毒,然后利用人体免疫系统摧毁它。  这些纳米陷阱能通过模仿病毒感染的

小小纳米孔破解蛋白质测序难题

原文地址:http://news.sciencenet.cn/htmlnews/2023/6/503589.shtm

国家纳米中心:新型非病毒纳米载体将有效抑制肿瘤生长

  近日,中国科学院国家纳米科学中心研究员蒋兴宇、郑文富带领的课题组发表了非病毒纳米载体递送的研究成果。他们开发了一系列非病毒的纳米载体,这些非病毒纳米载体可以高效递送CRISPR/Cas9系统到体内,为拓展这一强大基因编辑技术在生命科学和临床应用领域的应用提供了新途径。相关研究成果Thermo-t

病毒纳米生物学研究获进展

近日,中国科学院武汉病毒研究所-生物物理研究所联合团队在病毒纳米生物学研究中取得新进展。该团队在国际上首次提出了借助蛋白质的表观临界组装浓度控制病毒纳米颗粒(virus-based nanoparticles,VNP)组装,从而在其内部相容性包装外源物质的策略。相关工作3月21日在线发表于国际期刊

用金纳米“追踪”呼吸道病毒

  3月31日,记者从西南大学获悉,该校药学院研究生一篇研究如何用金纳米颗粒去标记记录呼吸道病毒侵染过程的论文,已被美国《自然》子刊《科学报告》录用,并在线发表。   据了解,现在西南大学药学院就读“药物分析”专业的研二学生万晓燕,在实验中发现,由于呼吸道病毒细胞极小,而传统的用来标记呼吸道病毒的

可以快速检测病毒的DNA纳米“机器”

  由合成DNA构成的纳米机器(nanoscalemachine ),可以快速、准确、廉价地诊断出包括艾滋病在内的多种疾病。  近日,一项研究可能会彻底改变冗长,繁琐,昂贵的抗体检测流程,来帮助医生们更好地诊断传染病和自身免疫性疾病,如类风湿性关节炎和艾滋病(HIV)。一个国际研究团队设计并合成了一

用纳米孔检测蛋白质获重要突破

  对通过纳米孔的DNA进行测序,可提供长的读长,单分子的读数,并且能够避免昂贵的荧光标记和费时的扩增步骤。那么,纳米孔方法能为蛋白质研究做什么呢?  虽然肉眼看不见,但是这种最新的分子生物学技术是强大的。纳米孔的直径约4纳米,是一层人造膜上产生的一个纳米孔,使研究人员能够收集一系列测量,对通过这些

纳米孔技术检测蛋白质获重要突破

  对通过纳米孔的DNA进行测序,可提供长的读长,单分子的读数,并且能够避免昂贵的荧光标记和费时的扩增步骤。那么,纳米孔方法能为蛋白质研究做什么呢?  虽然肉眼看不见,但是这种最新的分子生物学技术是强大的。纳米孔的直径约4纳米,是一层人造膜上产生的一个纳米孔,使研究人员能够收集一

武汉病毒研究所在病毒纳米生物学研究获进展

  近日,中国科学院武汉病毒研究所-生物物理研究所联合团队在病毒纳米生物学研究中取得新进展。该团队在国际上首次提出了借助蛋白质的表观临界组装浓度控制病毒纳米颗粒(virus-based nanoparticles,VNP)组装,从而在其内部相容性包装外源物质的策略。相关工作3月21日在线发表于国际期

蛋白质突变“导致病毒传播”

一项新的研究表明,齐昆古尼亚病毒的一个简单的蛋白质突变可以让它适应新的蚊子宿主,并传播到更多地区。 美国德克萨斯大学医学分校进行的研究发现,该病毒外壳蛋白质的单个氨基酸突变可以帮助它适应新的蚊子宿主白纹伊蚊(Aedes albopictus)。这项发现发表在了上周(12月7日)的《公共科学图书馆·

重组病毒的蛋白质分析实验

实验材料 Sf细胞试剂、试剂盒 胎牛血清PBSSDS蛋白酶抑制剂裂解缓冲液仪器、耗材 培养瓶培养箱离心机转子水浴锅实验步骤 1.  接种2.5×108 Sf9细胞于含5 ml 完全培养液/10%胎牛血清的25 cm2 培养瓶中,27℃温育≥ 2 h。从含无血清完全培养液和重组蚀斑的1 ml

重组病毒的蛋白质分析实验

实验材料Sf细胞试剂、试剂盒胎牛血清PBSSDS蛋白酶抑制剂裂解缓冲液仪器、耗材培养瓶培养箱离心机转子水浴锅实验步骤1.  接种2.5x108 Sf9细胞于含5 ml 完全培养液/10%胎牛血清的25 cm2 培养瓶中,27℃温育≥2 h。从含无血清完全培养液和重组蚀斑的1 ml 病毒贮液中取0.5

不用病毒-纳米颗粒也能递送CRISPR“剪刀”

  英国《自然·生物医学工程》杂志日前在线发表的一篇论文,介绍了通过纳米颗粒而非病毒来递送CRISPR基因组编辑分子的方法。实验中,美国科学家利用这种非病毒递送方法,有效纠正了引起小鼠杜氏肌营养不良症的遗传突变。   CRISPR被称为“生物科学领域的游戏规则改变者”,现已发展成为该领域最炙手可热

震惊:纳米颗粒会唤醒肺部潜伏的病毒!

  最近,来自德国环境健康研究中心的研究人员研究发现内燃机产生的纳米颗粒可以激活肺部组织细胞中休眠的病毒,相关研究成果近期发表在《Particle and Fibre Toxicology》杂志上。  为了躲避免疫系统,许多病毒都隐藏到了宿主细胞中且长期存在。如果免疫系统变弱或者产生某些条件,这些病

细胞膜纳米海绵有望成为“病毒克星”

  北京时间10月21日晚间,全球性合作计划“助力战胜耐药细菌计划”(Combating Antibiotic Resistant Bacteria Accelerator简称“CARB-X”)宣布,向总部位于美国加州圣地亚哥的Cellics Therapeutics提供1500万美元资助,以开发一

苏州纳米所等在蛋白质纳米结构单功能化研究中取得进展

  蛋白质纳米结构因其大小均一、组装可控、易于改造和大量制备等特性受到了越来越多的关注。作为典型代表,蛋白质纳米壳(例如病毒纳米颗粒、铁蛋白、热休克蛋白等)具有空心对称结构,在纳米材料合成、纳米颗粒排布、纳米器件组装、生物活性分子可控输送等方面已显现出诱人的应用价值。打破蛋白纳米壳表

280-纳米光吸收法测定蛋白质浓度实验

实验方法原理由于蛋白质分子中常酪氨酸、色氨酸、苯丙氨酸等苯环结构,在紫外 280 nm 波长处有最大吸收峰,其吸收值与蛋白质浓度成正比,故可用 280 nm 波长吸收值大小来测定蛋白质含量。实验材料待测蛋白质样品试剂、试剂盒实验用缓冲液(空白对照)仪器、耗材分光光度计(配备紫外档)石英比色杯用于溶液

280-纳米光吸收法测定蛋白质浓度实验

280纳米(A280)光吸收法             实验方法原理 由于蛋白质分子中常酪氨酸、色氨酸、苯丙氨酸等苯环结构,在紫外 280 nm 波长处有最大吸收峰,其吸收值与蛋白质

280-纳米光吸收法测定蛋白质浓度实验

实验方法原理 由于蛋白质分子中常酪氨酸、色氨酸、苯丙氨酸等苯环结构,在紫外 280 nm 波长处有最大吸收峰,其吸收值与蛋白质浓度成正比,故可用 280 nm 波长吸收值大小来测定蛋白质含量。实验材料 待测蛋白质样品试剂、试剂盒 实验用缓冲液(空白对照)仪器、耗材 分光光度计(配备紫外档)石英比色杯

杆状病毒系统蛋白质表达实验

基本方案 小规模表达 辅助方案1 蛋白质生产高峰期的确定 辅助方案2重组蛋白的代谢标记 基本方案2 重组蛋白大规模生产             实验方法原理

病毒的蛋白质的结构及功能

蛋白质是病毒的另一类主要成分,包括结构蛋白和非结构蛋白。非结构蛋白是指由病毒基因组编码的,在病毒复制或基因表达调控过程中具有一定功能,但不结合于病毒颗粒中的蛋白质。结构蛋白是指构成一个形态成熟的有感染性的病毒颗粒所必需的蛋白质医学|教育网搜集整理,包括壳体蛋白、包膜蛋白和毒粒酶等。壳体蛋白是构成病毒

杆状病毒系统蛋白质表达实验

实验方法原理 分析方案依赖于表达蛋白的天然特性。实验材料 草地夜蛾(Sf9)细胞高滴度的重组杆状病毒储液试剂、试剂盒 PBS1×SDS样品缓冲液仪器、耗材 含 10% 胎牛血清(FBS)的TNM-FH昆虫培养基60 mm 组织培养皿27℃ 培养箱(湿度可选)15 ml 聚丙烯离心管带有 GH-3.7

纳米生物技术可监控病毒感染过程

   病毒性疾病严重威胁着人类健康,深刻认识和理解病毒感染过程及致病机制是病毒性疾病防治的重要基础。研究病毒感染过程通常基于荧光标记技术,但是常用的荧光蛋白及传统荧光染料往往容易发生光漂白,难以长时间动态跟踪整个感染过程。  在“纳米研究”国家重大科学研究计划的支持下,围绕“量子点标记技术研究病毒侵

纳米技术检测植物病毒研究取得新成果

  2009年2月10日,记者在北京检验检疫局《应用纳米磁珠技术检测重要植物病毒的研究》项目鉴定会上了解到,该项目在国际上首次建立了适用于黄瓜绿斑驳花叶病毒、南芥菜花叶病毒等5种重要植物病毒的纳米磁珠富集病毒和提取RNA方法,并创新性地将纳米磁珠的病毒核酸提取技术与普通RT-PCR、实时荧光RT-P

纳米孔检测法可鉴别单个流感病毒

  大阪大学与东京工业大学的一个联合研究小组开发出一种新型单个颗粒检测法,利用纳米孔传感器和AI技术结合,可高精度鉴别出单个流感病毒的类型(A型、B型、A亚型)。  迄今为止鉴别流感类型的方式,是由专业人员目视判断免疫层析检测试剂盒中是否出现标记物。这种方法在病毒数量较少的感染初期很难判断,准确率还

如何用纳米技术对抗新型冠状病毒?

  目前还没有针对COVID-19的疫苗或特效治疗。COVID-19是由严重急性呼吸系统综合征2型冠状病毒 (SARS-CoV-2)引起的疾病。  自2019年底爆发以来,研究人员一直在竞相了解更多关于SARS-CoV-2的信息。SARS-CoV-2是一种来自冠状病毒家族的毒株,因其冠状外形而被称为

Nature-Materials:新型纳米颗粒可能广谱抗病毒

  世界上成百上千万的人每年因为病毒感染而死亡。现有的抗病毒药物,往往只能够针对单一的或者某一类病毒。现在仅有的几种广谱性的抗病毒药物,需要持续服用来抵抗病毒,且病毒成熟后导致的抗药性也持续存在。图片来自:pharmaceuticalintelligence.com  一个由美国、新西兰、意大利等国

编程“纳米机器人”可关闭疾病相关蛋白质

  据物理学家组织网7月16日报道,美国佛罗里达大学研究人员开发出一种微小的“纳米机器人”,可经过编程关闭基因生产线上产出的疾病相关蛋白质,将细胞水平治疗疾病向前推进了一步。相关论文发表在美国《国家科学院学报》上。   纳米粒子可作为诊断、监控、治疗疾病的应用基础工具而出现,如基因测试设备、基因标

Immunity:新型蛋白质或可增强机体感知病毒能力

  近日,来自匹兹堡大学癌症研究所的研究人员通过研究发现,增强细胞中一种天然蛋白质的含量就可以增强机体感知以及抑制病毒感染的能力,相关研究成果刊登于国际著名杂志Immunity上,该研究或为开发治疗包括流感病毒到丙肝病毒感染的一系列病毒感染的疗法提供希望。  研究者Saumendra N. Sark