4月30日《自然》杂志精选
封面故事: 基底外侧杏仁核的功能 杏仁核是大脑中进行情绪处理和应对具有积极或消极联系的刺激(好的刺激和坏的刺激)的重要部分。我们对杏仁核神经元是怎样分化的或这些不同功能是怎样分割到不同地方的知之甚少。在这项研究中,Kay Tye及同事识别出基底外侧杏仁核(BLA)是介导积极和消极情绪或动机反应的相关回路的一个分歧点。在用小鼠所作的研究中他们发现,BLA中投射到恐惧或奖励回路的神经元在施加恐惧或奖励条件之后突触强度发生相反变化。对神经元类群的选择性激发会分别引起负强化或正强化。转录组分析显示了可能介导这些功能差异的候选基因。 果蝇幼虫的一个多感觉回路 在作决定时,动物必须对各种不同感觉刺激进行整合,但多模式感觉信息是在信息处理过程的早期还是晚期被整合的在很大程度上却不被知道。通过对行为自由的动物进行神经操纵,并结合生理学研究和电子显微镜重建,Marta Zlatic及同事跟踪了数千个神经元中使果蝇幼虫能够逃避机械刺激或痛......阅读全文
神经元细胞根据神经元的机能分类介绍
1.感觉(传入)神经元: 接受来自体内外的刺激,将神经冲动传到中枢神经。神经元的末梢,有的呈游离状,有的分化出专门接受特定刺激的细胞或组织。分布于全身。在反射弧中,一般与中间神经元连接。在最简单的反射弧中,如维持骨骼肌紧张性的肌牵张反射,也可直接在中枢内与传出神经元相突触。一般来说,传入神经元
人工智能通过分析神经元变化来判断药物
日本名古屋大学的一个研究小组开发了一种分析细胞图像的人工智能,利用机器学习预测药物的治疗效果。这项被称为硅聚焦(silicon FOCUS)的新技术可能有助于发现治疗神经退行性疾病(如肯尼迪病)的药物。目前对神经退行性疾病的治疗通常有严重的副作用,包括性功能障碍和阻碍肌肉组织形成。然而,由于缺乏有效
认识睡眠神经元
《自然—通讯》3月6日发表的一篇论文报告了睡眠对活斑马鱼体内个体神经元的影响。研究发现,睡眠会增加染色体的运动(染色体动力学),从而改变染色体结构并减少DNA损伤。结果显示,染色体动力学可能是定义个体睡眠神经元的潜在标志物。 长期剥夺睡眠可以致命,睡眠障碍也与各种大脑功能缺陷有关。虽然研究人员
原代神经元培养
Protocol for the Primary Culture of Cortical and Hippocampal neurons Solutions and media required:Poly D-lysine/laminin solution - pdfDM/KY - pdfOptim
打造“固态神经元”-新型硅芯片再现生物神经元电行为
英国《自然·通讯》杂志3日发表的一项最新突破,英国科学家报告了一种新型硅芯片,可再现生物神经元的电行为。利用他们的方法,科学家有望开发出仿生芯片来修复神经系统中因病而导致功能异常的生物电路。 科学家们花了多年的时间来制造更加酷似生物神经元的芯片模型。但是,试图在现代硅片上模拟天然构造时,依然存
栀子苷通过雌激素非经典途径能有效保护海马神经元
免疫荧光染色可见Aβ干预的海马神经元出现坏死及神经网络破坏 目前,主流研究认为Aβ1-42大量积累形成老年斑,可最终导致阿尔茨海默病的发生。雌激素能够有效的治疗老年痴呆症,但该药同时也会带来严重的不良反应。中国北京中医药大学华茜教授所带领的团队发现,传统中药制剂通络救脑注射液具有类雌激素作
衰老神经元会阻碍小鼠神经新生
研究人员在1月21日发表于《干细胞报告》中的一项研究中表示,破坏老化干细胞生态位中的衰老细胞可以增强小鼠的海马体神经发生和认知功能。“我们的研究结果进一步支持了这一观点,即过度衰老是老化背后的一个驱动因素,即使在晚年,这些细胞的减少也能更新和恢复干细胞生态位的功能。”论文通讯作者、加拿大多伦多病童医
概述神经元的功能
神经元的功能:神经元的基本功能是通过接受、整合、传导和输出信息实现信息交换 神经元是脑的主要成分,神经元群通过各个神经元的信息交换,实现脑的分析功能,进而实现样本的交换产出。产出的样本通过联结路径点亮丘觉产生意识。 信息的接受和传导 在眼的视网膜上有感光细胞能接受光的刺激,在鼻粘膜上有嗅觉
神经元芯片(Neuron-Chip)
为了经济地、标准化地实现LonWorks技术的应用,Echelon公司设计了神经元芯片。神经元这一名称是为了表明正确的网络控制机制和人脑是极为相似的。人脑中是没有控制中心的。几百万个神经元连接在一起,每个神经元都能通过位数众多的路径向其他的神经元发送信息。每个神经元通常专注于某一种特殊功能,但是任何
神经元活动如何产生行为?答案在极个别的神经元中
我们大脑中的神经元活动如何引发行为上改变?从细胞层面到行为学层面存在巨大的鸿沟。这长久以来都是神经科学的难题。近日,来自马克斯普朗克神经生物学研究所的科学家们开发了一种方法,可以让他们识别出那些参与特定运动指令的神经细胞。科学家首次通过人为地激活少数神经元来诱发鱼的行为。了解神经环路的核心成分是
大鼠神经元细胞分离培养实验_解离神经元培养物的制备
实验材料母鼠试剂、试剂盒BSS仪器、耗材无菌器械显微镜实验步骤1. 杀死怀孕 18 天母鼠(常用过量 CO2 使其窒息),用无菌器械取出胚胎,放在无菌的培养皿中。2. 取下胚胎的头,放在盛有 4 ml 不含 Ca2+ 和 Mg2+ 的平衡盐溶液(BSS)的培养皿中。3. 从头颅骨上取下脑,放在 35
Science:证实大脑中的一个神经元环路起着指南针的作用
在一项新的研究中,来自美国霍华德-休斯医学研究所的研究人员发现存在于果蝇大脑中间的一个神经元环路(a ring of neurons)起着指南针(compass)的作用,有助这种昆虫知道它在何处,它去过哪里和它将去往哪里。他们解释了他们如何扩展他们在两年前开始的研究,以及他们的发现可能对哺乳动物
神经元与双眼相连,但它们只与一个视网膜建立了联系
视觉丘脑通常被认为是将来自视网膜的视觉刺激传递到大脑皮层。研究人员现在表明,尽管小鼠视觉丘脑中的神经元与双眼相连,但它们只与一个视网膜建立了强大的功能联系。这些结果在一定程度上解决了早期研究的矛盾结果,并证明了用功能分析补充结构数据的重要性。 我们有两只眼睛,却只看到我们面前的树一次。因此
Science-新研究使得通过操纵特定神经元控制进食成为可能
在一项新的研究中,来自中国上海交通大学、中科院武汉物理与数学研究所、复旦大学、新加坡科技研究局和新加坡国立大学的研究人员发现大脑中的一个区域似乎在调节进食行为中发挥着关键性的作用。相关研究结果发表在2018年7月6日的Science期刊上,论文标题为“Regulation of feeding
严军研究组通过单细胞测序技术发现新的神经元亚型
2月18日,《自然-神经科学》期刊在线发表了题为《小鼠视交叉上核基因表达的时空单细胞分析》的研究论文。该研究由中国科学院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、神经科学国家重点实验室严军研究组完成。该研究通过单细胞测序技术对小鼠昼夜节律中枢——视交叉上核进行了系
人工神经元利用光实现神经形态计算
沙特阿卜杜拉国王科技大学研究团队开发出一种人工神经元,可利用光电实现神经形态计算。新技术模仿突触或神经元功能,可适应和重新配置其对光的响应进而完成计算。这项突破性进展发表在最新一期《光:科学与应用》杂志上。 团队利用二维材料二硒化铪设计并制造了金属氧化物半导体电容器(MOSCap)。这种器件采
简述神经胶质细胞和神经元的区别
1、神经细胞有两个“突起”叫做轴突和树突,而神经胶质细胞只有一个; 2、神经细胞能够产生动作电位,神经胶质细胞则不能,但它有休止电位; 3、神经细胞有使用神经递质的突触,而神经胶质细胞没有突触; 4、脑中神经胶质细胞的数量是神经元的数量的10-50倍还多。
根据神经元释放的神经递质分类
根据神经元释放的神经递质(neurotransmitter),或神经调质(neuromodulator),还可分为: ①胆碱能神经元(cholinergic neuron); ②胺能神经元(aminergic neuron); ③肽能神经元(peptidergic neuron
小鼠神经干细胞分化为神经元
实验概要小鼠神经干细胞分化为神经元主要试剂无菌水、DPBS、0.05%胰蛋白酶胰蛋白酶、细胞基础培养液、 PDL、laminin、小鼠神经分化培养液(Neuron M)主要设备4孔板、12mm细胞培养玻片实验步骤① 在4孔板每个孔中放置一块12mm细胞培养玻片,每孔加入100ug/mL的PDL500
研究证实神经元可重编程为另一种神经元
美国哈佛大学干细胞生物学家通过活小鼠实验证明,脑中的神经元也能改变“身份”,通过直接谱系重编程,一种已经分化了的神经元能被转化成另一种神经元。研究人员指出,这一发现表明脑细胞并非像人们过去认为的那样是不可改变的,这有可能改变神经生物学的发展方向,并对治疗神经退行性疾病产生重大影响。相关论文在线发
追踪神经元的新技术显示,有些神经元能覆盖整个大脑!
原文以A giant neuron found wrapped around entire mouse brain为标题 发布在2017年2月24日的《自然》新闻上 原文作者:Sara Reardon 3D重建图像显示,意识相关脑区存在一个“荆棘冠冕”型神经元。 脑部神经元分叉和其它神经
神经元特质烯醇化酶
中文名称:神经元特质烯醇化酶 (NSE)英文名称及缩写:Insulin (Ins)正常参考值:血清:成人2.0~3.4ug/L 儿童3.1~18.5ug/L 脊髓液:0.5~2.0ug/L临床意义:1、小细胞肺癌2、儿童成神经细胞瘤3、儿童横纹肌肉瘤4、儿童威尔姆斯瘤(Wi
简述多极神经元的特点
1、细胞体生有许多突起(有长有短,能够传递神经冲动) 2、长的突起外表大都套有一层鞘——神经纤维。 3、神经纤维的末端的细小分支叫神经末鞘(它的作用是与肌肉协调相配合,使肌肉收缩和舒张)。 4、各个神经元的突起末端都与多个神经元的突起相连接,形成非常复杂的网络。这个复杂的网络就
简述神经元的基本构造
神经元的基本结构:可分为细胞体和突起两部分。胞体包括细胞膜、细胞质和细胞核;突起由胞体发出,分为树突(dendrite)和轴突(axon)两种。树突较多,粗而短,反复分支,逐渐变细;轴 突一般只有一条,细长而均匀,中途分支较少,末端则形成许多分支,每个分支末梢部分膨大呈球状,称为突触小体。在轴突
神经元原代培养方法
从孕17-18天的雌鼠的胎儿分离神经元细胞。孕雌鼠麻醉然后解剖,胎儿收集到HBSS-1中然后快速断头。剥离脑膜和白质后,大脑皮质收集入 HBSS-2 液中机械磨碎。皮质碎片移到有0.025%胰酶的HBSS-2液中37°C消化15分钟。胰酶消化后,细胞用含有10%胎牛血清的HBSS-2液冲洗两
Cell:首次发现“好斗”神经元
加州理工Caltech的科学家们发现,雄性果蝇比雌性更具攻击性是因为其大脑具有特殊的好斗细胞,而雌性果蝇缺乏这类神经元。文章于一月十六日发表在Cell杂志上。 “我们发现的这种性别特异性细胞,通过释放特定的神经肽(或激素)产生影响。这种物质在包括小鼠和大鼠在内的哺乳动物中,也与攻击性密切相
神经元控制运动的奥秘
卡内基梅隆大学工程学院和匹兹堡大学的新研究表明,运动皮层神经元可以最佳地调整如何以最优的方式编码运动。这些发现增强了我们对大脑如何控制运动的理解,并有可能提高脑机接口或神经假肢的性能和可靠性,可以帮助瘫痪患者和截肢者。 生物医学工程系和神经认知基础中心的助理教授Steven Chase说:“我
简述多极神经元的分类
多极神经元(multipolarneuron):有一个轴突和多个树突,是人体中数量最多的一种神经元,如脊髓前角运动神经元和大脑皮质的锥体细胞等。多极神经元又可依轴突的长短和分支情况分为两型: ①高尔基Ⅰ型神经元,其胞体大,轴突长,在行径途中发出侧支,如脊髓前角运动神经元; ②高尔基Ⅱ型神经元
关于多极神经元的简介
具有三个以上的突起,其中仅有一支为轴突,其余均为树突。多突出的神经元接触面积大,因此神经元之间的联系也广泛。此种神经元的数量多,分布广,形态多样,胞体大小不等。中枢神经系统内的中间神经元或联络神经元、运动神经元和植物性神经元等均属多极神经元。
关于神经元细胞的简介
神经元即神经元细胞,是神经系统最基本的结构和功能单位。分为细胞体和突起两部分。细胞体由细胞核、细胞膜、细胞质组成,具有联络和整合输入信息并传出信息的作用。突起有树突和轴突两种。树突短而分枝多,直接由细胞体扩张突出,形成树枝状,其作用是接受其他神经元轴突传来的冲动并传给细胞体。轴突长而分枝少,为粗