微生物所在大肠杆菌中实现碳浓缩固碳

将CO2转化为燃料或化学品,是实现CO2的资源化利用、缓解资源能源短缺和温室效应的一种途径。经遗传改造的蓝细菌或者藻类等光合自养微生物,可以将CO2转化为包括乙醇、丁醇、丙酮、异丁醛、乳酸等在内的数十种化学品,但由于自养生物生长速度慢,CO2生物转化为这些化学品的效率还比较低。 异养生物可以通过磷酸烯醇式丙酮酸羧化酶等自有途径固定CO2,但目前尚不清楚光合生物的固碳途径是否能在异养生物中发挥作用,效率如何。如果能够在异养生物酵解途径的基础上引入额外的固碳途径并发挥功能,则有可能为目标代谢产物的生产提供额外的碳架来源。 从这一假设出发,中国科学院微生物研究所李寅课题组在大肠杆菌中导入了卡尔文循环中的磷酸核酮糖激酶和核酮糖-1,5-二磷酸羧化酶/加氧酶,发现可以在大肠杆菌的中央代谢中固定额外的CO2。采用基于13C的定量分析发现,CO2的供给是大肠杆菌异养固碳的限速步骤。进一步引入蓝细菌特有的碳浓缩机制,大肠杆菌中央代谢的固......阅读全文

单细胞生物固碳、固氮双功效机制破译

蓝藻(Blue green algae)是一种重要的固碳菌,由于具有将氮气转化为可利用的营养,因此能够在营养贫乏的水域中进行光合作用。详细内容刊登于最新一期《The International Society for Microbial Ecology (ISME) Journal》杂志。 由美国

微生物所在大肠杆菌中实现碳浓缩固碳

  将CO2转化为燃料或化学品,是实现CO2的资源化利用、缓解资源能源短缺和温室效应的一种途径。经遗传改造的蓝细菌或者藻类等光合自养微生物,可以将CO2转化为包括乙醇、丁醇、丙酮、异丁醛、乳酸等在内的数十种化学品,但由于自养生物生长速度慢,CO2生物转化为这些化学品的效率还比较低。  异养生物可以通

生物炭调节蔬菜生产系统固碳减排研究获进展

原文地址:http://news.sciencenet.cn/htmlnews/2024/3/518545.shtm 近日,广东省农业科学院蔬菜研究所蔬菜栽培与智慧农业团队在生物炭调节蔬菜生产系统固碳减排研究方面取得进展,明确了蔬菜生产系统中生物炭与氮肥用量间的互作效应。相关成果发表于《全面环境科学

高寒荒漠和草原土壤固碳微生物的研究

  固碳微生物是一类与植物相似将大气CO2转化为有机质的微生物。土壤微生物固碳功能的重要性最近几年才逐渐被认识,但土壤固碳微生物群落特征、固碳潜力及其环境因子驱动机制尚未被认识。干旱半干旱生态系统约占全球陆地面积的41%,该生态系统植被生长受到包括土壤水分在内的多种环境因子限制,凸显土壤微生物固碳的

养细胞的细胞生物学

一、体内、外细胞的差异和分化1、差异:细胞离体后,失去了神经体液的调节和细胞间的相互影响,生活在缺乏动态平衡的相对稳定环境中,日久天长,易发生如下变化:分化现象减弱;形态功能趋于单一化或生存一定时间后衰退死亡;或发生转化获得不死性,变成可无限生长的连续细胞系或恶性细胞系。因此,培养中的细胞可视为一种

生态中心在生物炭土壤固碳和遗留磷利用领域发表论文

  温室气体减排和碳生态封存是应对全球变暖的两个关键过程。生物炭可以在土壤环境中长时间稳定存续进行直接碳封存,还可以通过改善土壤结构和优化微生物群落、减少土壤中温室气体排放、促进植物源碳的固存。目前,生物炭已成为促进土壤生态固碳以及温室气体减排领域的研究热点。然而,生物炭在进入土壤后的稳定机制、对土

亚洲生物多样性和固碳能力协同保护规划研究获进展

  2021年10月,《生物多样性公约》第15次缔约方大会将在中国召开,将审议“2020年后全球生物多样性框架”(Global Biodiversity Framework,GBF),确定2030年全球生物多样性新目标。GBF预稿提出,到2030年,保护30%陆地和海洋面积的全球目标。然而,中国及亚

化能异养型微生物的分类

  根据生态习性微生物可分为腐生型和寄生型两类。  1.腐生型  从无生命的有机物获得营养物质。引起食品腐败变质的某些霉菌和细菌就是属于这一类型。如引起腐败的梭状芽孢杆菌(Clostridium)、毛霉(Mucor)、根霉(Rhizopus)、曲霉(Aspergillus)等。  2.寄生型  必须

化能异养型微生物的简介

  化能异养型微生物能源来自有机物的氧化分解,ATP通过氧化磷酸化产生,碳源直接取自于有机碳化合物。它包括自然界绝大多数的细菌,全部的放线菌、真菌和原生动物。

冠森生物固相萃取装置

固相萃取/固相萃取装置(Solid-Phase Extraction,简称SPE)是一种被广泛应用且备受欢迎的样品前处理技术,就是利用固体吸附剂将液体样品中的目标化合物吸附,与样品的基体和干扰化合物分离,然后再用洗脱液洗脱或加热解吸附,达到分离和富集目标化合物的目的。它在传统的液—液萃取基础上采用物

生态固碳/重大生态工程固碳项目联合启动

  3月28日,根据中国科学院战略性先导科技专项“应对气候变化的碳收支及相关问题”管理办公室(以下简称碳专项)的统一安排,“生态系统固碳现状、速率、机制和潜力”(以下简称生态固碳)和“国家重大生态工程固碳量评价”(以下简称重大生态工程固碳)项目启动会和技术标准研讨会在中科院地理科学与资源研

化能异养型微生物的分类介绍

  根据生态习性微生物可分为腐生型和寄生型两类。  1.腐生型  从无生命的有机物获得营养物质。引起食品腐败变质的某些霉菌和细菌就是属于这一类型。如引起腐败的梭状芽孢杆菌(Clostridium)、毛霉(Mucor)、根霉(Rhizopus)、曲霉(Aspergillus)等。  2.寄生型  必须

成都生物所“异养硝化微生物菌剂培养方法和用途”获ZL

  8月18日,从中国科学院成都生物研究所科技处获悉,该所科研成果“一种异养硝化微生物菌剂、其培养方法和用途”、“一种制备阿拉伯烯糖的方法”、“一种6-O-磺酰基-烯糖类化合物的制备方法”获国家知识产权局发明ZL授权。   异养硝化菌广泛用于养殖等有机物浓度和氨氮浓度都较高的废水净化

青藏高原所高寒荒漠和草原土壤固碳微生物研究获进展

固碳微生物是一类与植物相似将大气CO2转化为有机质的微生物。土壤微生物固碳功能的重要性最近几年才逐渐被认识,但土壤固碳微生物群落特征、固碳潜力及其环境因子驱动机制尚未被认识。干旱半干旱生态系统约占全球陆地面积的41%,该生态系统植被生长受到包括土壤水分在内的多种环境因子限制,凸显土壤微生物固碳的重要

固碳和残碳有啥区别

所谓固碳也叫碳封存,指的是增加除大气之外的碳库的碳含量的措施,包括物理固碳和生物固碳。物理固碳是将二氧化碳长期储存在开采过的油气井、煤层和深海里。 植物通过光合作用可以将大气中的二氧化碳转化为碳水化合物,并以有机碳的形式固定在植物体内或土壤中。生物固碳就是利用植物的光合作用,提高生态系统的碳吸收和储

赋能“双碳”-生物合成技术助力绿色低碳

提到生物合成,你会想到什么?是生活在实验室中的微生物,还是出现在科幻电影中的“复制人”?其实,生物合成和我们的生活并没有那么遥远。生物合成能够合成淀粉、肉制品,具备服务于工业生产与农业转型的巨大潜力,甚至在减少二氧化碳排放、降低资源消耗等方面,也能发挥独特优势。  在“双碳”目标的指引之下,低碳生物

我国揭示稻田生态系统微生物残留物固碳的氮素调控因素

  微生物是土壤有机碳转化的重要参与者,其通过合成代谢作用将有机碳转化为自身细胞组成,待其死亡后以微生物残体形式在土壤中积累。其中,氨基糖是微生物细胞壁的重要组成部分,也是土壤稳定有机碳的重要来源。水稻土作为一种重要的碳汇场所。在淹水条件下,由于水中溶解氧的扩散作用,在水稻土表层形成一层约1cm深的

种植作物发展生物燃料“导致碳债务”

两项研究表明改变土地的使用从而生产基于农作物的生物燃料确实可能导致比燃烧化石燃料更多的温室气体排放。 亚马逊雨林被砍伐用于建立大豆种植园 这两项研究都发表在了上周(2月8日)出版的《科学》杂志上,它们估计了把森林和草原转变成农田用于生物燃料生产的影响。两项研究都得出结论说,这样的生物燃料带来

微生物修复土壤低碳环保

  一块被污染过的土地是否只能惨遭遗弃?或许不用那么悲观。自然界最重要的污染物分解者——微生物已逐步被运用到治理土地污染中。  日前,在中国高科技产业研究会主办的新闻发布会上,土壤修复专家、北京三色微谷集团董事长王立平说,应用他们研发的“三色原菌剂”,可针对性改良因长期使用化肥、农药造成的土地板结,

生物燃料排碳:不只是平衡

  在西班牙的沙漠里,绿色的污泥在纵横交错的管道里安静地冒着泡。它吸收着荒漠的阳光,吞噬着附近工厂排放的CO2,迅速地成长着。每天,工人们刮掉一些污泥,将他们带走转化为石油。照这样看,人们在一天内做着地质学上要4亿年才能完成的工作。   确实,这不是什么普通的石油。它属于一类神奇的“负碳”燃料,能

木炭和它的固碳能力

  我们应该用木炭固定碳吗?   有人声称生物炭(biochar)是缓解气候变化和促进土壤肥力的很大的希望。但是批评家警告说,还需要更多的研究才能理解它的效应。   生物炭是基于亚马逊黑土(terra preta)的——这是一种骨骼、粪便和木炭的混合物,最初在哥伦布之前的时代用于改善亚马逊流

海草固碳能力远超森林

  一项最新研究结果称,每平方公里沿海海草可以比森林存储更多的碳,这意味着这些海岸植物可能成为气候变化解决方案的一部分。   据路透社报道,一个全球联合研究小组在《自然地球科学》杂志上报告说,尽管海草占据了全世界不到0.2%的海洋,每平方公里却可容纳多达83000吨碳。一个典型的陆地森林每平方公里

成都生物所研究获得异养硝化好氧反硝化细菌

  传统的氨氮废水处理是通过自养硝化菌的硝化作用与异养反硝化菌的反硝化作用的组合工艺使氨氮转化为氮气,工艺冗长,能耗大,不仅增加了运行费用,还增加了运行管理和后续处理的难度。   11月5日,中科院成都生物所“一株异养硝化好氧反硝化细菌及其培养方法和用途”获国家知识产权局发明ZL。该

土壤微生物生物量碳测定方法获得高度评价

  国际著名土壤学期刊《土壤生物学与生物化学》(Soil Biology & Biochemistry,SBB)在2011年43卷5期“Citation Classics”栏目发表了由其主编Richard G.. Burns教授以“Soil Biology & Biochemistry Ci

芬兰:交通用生物燃料增-碳排放降

  芬兰交通与信息部报告说,2011年,在交通运输量增加1%的情况下,芬兰交通运输行业的二氧化碳排放量为1322万吨,反而比前一年下降了21万吨。   据芬兰《赫尔辛基新闻》6日报道,造成碳排放下降的最主要原因,是生物燃料使用量增加。2011年,生物燃料在芬兰交通运输业的使用量提高了6%。   

杉木人工林随林龄固碳速率变化和固碳能力获揭示

原文地址:http://news.sciencenet.cn/htmlnews/2023/10/510344.shtm中国科学院华南植物园生态与环境科学中心博士生李旭和博士后Luis Carlos Ramos Aguila在研究员刘菊秀的指导下,研究揭示了杉木人工林随林龄固碳速率和碳储量变化规律。近

生物碳含量创新高!国内首款生物基氨纶新产品诞生

原文地址:http://news.sciencenet.cn/htmlnews/2023/10/509681.shtm国内首款生物基氨纶新产品诞生,成为全球唯一一款生物碳含量达到欧盟三星标准(欧盟OK Biobased标准)的生物基氨纶纤维产品。近日,南京工业大学教授郭凯团队与连云港杜钟新奥神氨纶有

获批上市!联康生物自研博固泰

  1月22日早间,联康生物科技集团在港交所公告,其自主研发的博固泰(特立帕肽注射液),于1月16日获国家药品监督管理局批准上市。  据悉,博固泰(特立帕肽注射液)是联康生物科技集团上市的第五款产品,亦是国产首款一次性预充笔式特立帕肽注射液。  联康生物科技集团在公告中表示,特立帕肽在促进新骨形成、

叶片碳调控滨海“蓝碳”形成的微生物机制获揭示

原文地址:http://news.sciencenet.cn/htmlnews/2023/11/511849.shtm

叶片碳调控滨海“蓝碳”形成的微生物机制获揭示

  中国科学院华南植物园海岸带生态系统过程与环境健康研究组揭示了红树林叶片碳组分调控海岸带“蓝碳”形成的微生物机制。近日,相关成果在线发表于《全球变化生物学》。  论文第一作者、中国科学院华南植物园副研究员卢哲表示,植树造林是减缓红树林损失及增强其生态系统服务的有效途径。然而,在造林过程,红树林土壤