遗传发育所植物NAD补救合成途径解析和进化研究获进展
NAD (尼克酰胺腺嘌呤二核苷酸) 作为电子传递载体(辅酶)参与众多的氧化还原反应而为广大研究人员所熟知。在植物NAD补救合成途径中,都存在尼克酸(nicotinate,NA)和多种NA的衍生物(糖基化,甲基化等),但迄今为止,关于NA衍生物在植物代谢中的分子机制及其生理功能尚未有报道。 中国科学院遗传与发育生物学研究所王国栋研究组首先利用色质联用技术发现拟南芥中NA的糖基化修饰发生在NA的N-位或者O-位,并且O-位糖基化分布呈现十字花科特异性。进一步利用基因表达-酶活关联分析,在糖基转移酶家族1中(共有106个成员)发现并功能鉴定三个NA糖基转移酶,包括一个NAOGT(UGT74F2,之前报道是水杨酸糖基转移酶)和两个NANGT(UGT76C4和UGT76C5)。拟南芥UGT74F2的突变体(ugt74f2-1)比野生型积累更高浓度的游离NA,这与ugt74f2-1在各种逆境条件下的种子萌发率呈负相关,同时ugt74f......阅读全文
植物蛋白质组学和糖基化(二)
4. 注释( 1 ) 每个实验均使用新鲜的 3 mol/L 甲醇- HCl 和硅烷化试剂。( 2 ) 要仔细识别蛋白质印迹,因为 WGA 既能识别 N-糖苷的 GlcNAc,也能识别 O-GlcNAc。( 3 ) 用于在硝酸纤维素印迹膜上封闭结合位点的溶液应避免糖蛋白污染。所以我们建议在这一步骤中使
植物蛋白质组学和糖基化(一)
1. 前言与其他真核细胞一样,植物细胞中,糖基化通常发生在分泌蛋白质上,虽然在细胞质蛋白和核蛋白上也发现一些糖基化反应。根据寡糖部分和蛋白质骨架之间的连接方式,可将糖基化分为两种类型:N -糖基化和 O-糖基化。植物中 N-糖基化研究最多。1.1 N-糖基化与其他真核细胞一样,在植物细胞中,N-糖
植物蛋白质组学和糖基化实验
实验材料链霉亲和素-过氧化物酶 牛胰核糖核酸酶 B
糖基转移酶的研究前景
在糖肽的生物合成系统中得到了Gtfs的晶体,结构测定表明这类Gtfs家族有两个共同的结构域。NDP?糖结合到C?端,糖苷配基结合到N?端(AGV/GtfB,DVV/GtfA)这个两裂的结构仅仅由两个肽连接到一起,提示混合和匹配各自的结构域是可以实现的。因此,DNA shuffling或相关酶定向进化
蛋白质糖基化的案例研究
蛋白质糖基化是一种生命活动中普遍存在的翻译后修饰,赋予蛋白质不同的生物功能和增强的物理化学稳定性。糖基化的类型根据糖苷键中涉及的特定原子进行分类:O-糖基化将糖连接到丝氨酸、苏氨酸和酪氨酸残基的羟基氧上;N-糖基化将糖与天冬酰胺的酰胺氮连接;S-糖基化将糖添加到半胱氨酸的硫醇硫中,这类糖基化不太常见
新研究证明糖基化促进癌症转移
糖尿病患者又出现了一个新问题:转移性癌症的风险增加了。康奈尔大学的一项新研究指出了这种对健康双重打击的一种可能解释。 生物与环境工程学教授Mingming Wu说:“癌症和糖尿病是发达国家最严重的健康问题之一,两者之间存在联系。对于癌症来说,还有一半的原因是遗传。直到最近,我们才意识到我们还错
武汉植物园在挖掘异黄酮糖基转移酶研究中取得新进展
糖苷是天然药物的修饰基团,增强了小分子药物的水溶性与制剂成药的可操作性。野葛是一种豆科植物,其根富含多种异黄酮糖苷类化合物,具有降血脂、抗肿瘤、预防骨质疏松和女性更年期综合症等功效。挖掘野葛根中催化异黄酮糖苷形成的糖基转移酶,对于新药合成与老药糖基化改造具有重要的应用价值。 中国科学院武汉
植物蛋白质组学和糖基化实验1
实验材料链霉亲和素-过氧化物酶牛胰核糖核酸酶 B甲基比喃甘露糖苷卵清白蛋白试剂、试剂盒DIG 糖链检测试剂TTBS 缓冲液Lectin- biotinTBS 缓冲液实验步骤3.1 这个蛋白质是糖蛋白吗只有一种方法能全面的回答“这个蛋白质是糖蛋白吗?”这个问题。这需要使用能检测并定量印记上糖蛋白的总糖
中科院植物所揭示类黄酮糖基化分子机制
记者日前从中国科学院植物研究所获悉,该所研究员庞永珍研究组以类黄酮含量丰富的茶叶和百脉根为研究对象,对类黄酮未知生物合成机理,特别是类黄酮糖基化的分子机制展开研究。揭示了特异的糖基转移酶(UGT)基因亚家族在类黄酮糖基化中的意义以及在植物生长发育中的功能。相关成果在线发表在国际学术期刊《实验植
植物蛋白质组学和糖基化实验(四)
3.3 我的糖基化蛋白在哪实验人员可通过这个方法获得关于糖苷在蛋白骨架上的分布及糖苷本身的结构信息。这类实验可在纯化的糖蛋白或者从 1D 或 2D 电泳胶上分离出来的蛋白上进行,首先,用蛋白内切酶消化蛋白质,通过高效液相色谱(HPLC) 分离消化后的肽和糖肽混合物。对含有糖苷的收集组分进行糖
中科院植物所揭示类黄酮糖基化分子机制
从中国科学院植物研究所获悉,该所研究员庞永珍研究组以类黄酮含量丰富的茶叶和百脉根为研究对象,对类黄酮未知生物合成机理,特别是类黄酮糖基化的分子机制展开研究。揭示了特异的糖基转移酶(UGT)基因亚家族在类黄酮糖基化中的意义以及在植物生长发育中的功能。相关成果在线发表在国际学术期刊《实验植物学杂志(
植物蛋白质组学和糖基化实验2
3. 糖基释放后的蛋白质分析1 ) 糖基释放的化学处理方法还原性氨化反可应选择性的解离糖蛋白上的 O-糖苷(见注释 10) 。去糖基化的蛋白用 1D SDS-PAGE 分析,将其迁移情况与其糖基化形式的蛋白进行比较,电泳迁移率的增加是 O-连糖苷出现在蛋白上的证据(见注释 11)。( 1 ) 将 1
植物蛋白质组学和糖基化实验(三)
3. 糖基释放后的蛋白质分析1 ) 糖基释放的化学处理方法还原性氨化反可应选择性的解离糖蛋白上的 O-糖苷(见注释 10) 。去糖基化的蛋白用 1D SDS-PAGE 分析,将其迁移情况与其糖基化形式的蛋白进行比较,电泳迁移率的增加是 O-连糖苷出现在蛋白上的证据(见注释 11)。( 1 ) 将 1
植物蛋白质组学和糖基化实验(二)
刀豆球蛋白 A (ConA)- 过氧化物酶方法(根据参考文献 20 修改的方法)。( 1 ) 通过 1D 或 2D 电泳分离,并转移到硝酸纤维素膜上。( 2 ) 用 TTBS 缓冲液浸泡印迹膜 1 h。( 3 ) 将印迹膜在含有 ConA ( 25 μg/ml)的 TTBS 缓冲液中,室温下温育 2
植物蛋白质组学和糖基化实验(五)
1. 含高甘露糖型 N-糖苷糖蛋白的鉴定本方法是我们实验室以油菜籽为实验材料建立的,本方法也适用于其他植物材料。( 1 ) 将 6 g 植物材料放入 4°C 预冷的研钵中,加入 50 ml 预冷的 TBS 缓冲液,研磨萃取蛋白质(见注释 13),接着 10000 g 离心萃取物 30 min,去
植物蛋白质组学和糖基化实验(一)
实验材料 链霉亲和素-过氧化物酶牛胰核糖核酸酶 B甲基比喃甘露糖苷卵清白蛋白试剂、试剂盒 DIG 糖链检测试剂TTBS 缓冲液Lectin- biotinTBS 缓冲液实验步骤 3.1 这个蛋白质是糖蛋白吗只有一种方法能全面的回答“这个蛋白质是糖蛋白吗?”这个问题。这需要使用能检测并定量印记上糖蛋白
简述-糖基转移酶的研究前景
最近,在糖肽的生物合成系统中得到了Gtfs的晶体,结构测定表明这类Gtfs家族有两个共同的结构域。NDP?糖结合到C?端,糖苷配基结合到N?端(AGV/GtfB,DVV/GtfA)[13]。这个两裂的结构仅仅由两个肽连接到一起,提示混合和匹配各自的结构域是可以实现的。因此,DNA shuffli
研究抗体药物的糖基化修饰为何重要?
在众多的蛋白质翻译后修饰中,糖基化修饰是最重要和最复杂的修饰之一,也是评价抗体的关键质量属性之一。单抗药物功能的实现与其糖基化修饰密切相关,糖基化修饰会影响蛋白的性能,如构象、稳定性、溶解度、药物代谢动力学、活性及免疫原性。本文中,笔者就糖基化及其对抗体药物的稳定性/半衰期、安全性及生物活性进行
糖基的性质
糖基是糖苷分子的一部分,另一部分称糖苷配基或配基,这两部分之间的连键称糖苷键。
糖基的定义
糖基是指单糖与其他不是糖类的分子结合,单糖的部分,叫做这个物质的糖基。
糖基的应用
糖基和糖苷配基一起组成的糖苷键,是判断糖类还原性的标志。
种康院士团队揭示植物糖基化修饰调控开花新机制
蛋白质糖基化是一种重要的蛋白质翻译后修饰方式,在复杂的生命活动中扮演重要角色。常见的糖基化,如N-糖基化和O-糖基化,蛋白质一般会被修饰上结构复杂的糖链。 然而,生物体中还存在一种常见但比较特殊的糖基化,它仅在蛋白质上修饰一个单糖。在此修饰中,N-乙酰氨基葡萄糖(GlcNAc)通过O-糖苷键连
蛋白质糖基化的检测实验——植物凝集素亲和层析
试剂、试剂盒TBS仪器、耗材植物凝集素柱实验步骤1. 在含有 Ca2+、Mg2+ 的 TBS 中平衡植物凝集素亲和介质,用至少 20 个柱体积清洗。2. 在 5 ml —次性塑料吸管或注射器中制备 1 ml 植物凝集素柱。3. 以缓慢流速(小于 0.25 ml/min)将蛋白样本上柱,回收所有过柱子
深圳先进院建立高效解析植物糖基转移酶功能的方法
近日,中国科学院深圳先进技术研究院研究员赵乔团队于Molecular Plant在线发表了题为Glycosides-specific metabolomics combined with precursor isotopic labeling for characterizating plant
关于糖基化血红蛋白的研究背景介绍
1958年,Huisman 和 Meyering用色谱柱首次将糖基化血红蛋白与其它形式的血红蛋白分离开来。1968年Bookchin 和 Gallop,首次描绘了糖蛋白的特性。1969年,Samuel Rahbar和他的同事首次在糖尿病人中现发糖基化血红蛋白增加。1975年,Bunn和他的同事描
糖基转移酶在植物代谢途径中的具体作用是什么?
蛋白质糖基化:糖基转移酶参与将糖分子添加到蛋白质上,形成糖蛋白。糖蛋白在植物体内具有多种功能,如细胞壁的合成、信号传导、免疫应答等。 脂质糖基化:糖基转移酶参与将糖分子添加到脂质上,形成糖脂。糖脂在植物体内具有多种功能,如细胞膜的稳定、信号传导、免疫应答等。 细胞壁合成:糖基转移酶参与将糖分
新研究揭示糖基转移酶对称加糖的机制
近日,中国科学院广州生物医药与健康研究院研究员刘劲松课题组和中国科学院南海海洋研究所研究员张长生课题组合作,解析了洋橄榄叶素(Elaiophylin)生物合成中的糖基转移酶ElaGT对称加糖的机制。相关研究发表于Acta Cryst. D Struct Biol。刘劲松课题组的副研究员许婷婷、助理研
植物激素的研究历史
C.Darwin在1880年研究植物向性运动时,只有各种激素的协调配合,发现植物幼嫩的尖端受单侧光照射后产生的一种影响,能传到茎的伸长区引起弯曲。1928年荷兰F.W.温特从燕麦胚芽鞘尖端分离出一种具生理活性的物质,称为生长素,它正是引起胚芽鞘伸长的物质。1934年荷兰F.克格尔等从人尿得到生长素的
什么是糖基化?
糖基化是在酶的控制下,蛋白质或脂质附加上糖类的过程,发生于内质网。在糖基转移酶作用下将糖转移至蛋白质,和蛋白质上的氨基酸残基形成糖苷键。蛋白质经过糖基化作用,形成糖蛋白。糖基化是对蛋白的重要的修饰作用,有调节蛋白质功能作用。
糖基化与免疫
蛋白糖基化是真核生物常见的蛋白质翻译后修饰过程,合成后的或正在合成的蛋白质在糖基转移酶的作用下,将活化的单糖加到肽链上。根据糖与肽链中氨基酸的连接方式不同,可将糖基化修饰分为三种形式:N-糖苷(N-glycan)、O-糖苷(O-gly-can)、糖基磷脂酰肌醇(glycosylphosphat