Antpedia LOGO WIKI资讯

张锋公司GenomeBiology发表CRISPR新成果

细菌一直在与病毒或入侵核酸进行斗争,为此它们演化出了多种防御机制,CRISPR适应性免疫系统就是其中之一。规律成簇的间隔短回文重复CRISPR与内切酶Cas9的组合,可以在引导RNA的指引下,靶标并切割入侵者的遗传物质。 近几年,人们将CRISPR系统开发成了强大的基因组编辑工具。该系统使用简单而且扩展性强,很快便受到了研究者们的广泛欢迎。几乎所有实验室都可以很方便的进行CRISPR基因组编辑,你只需要在自己感兴趣的细胞或生物中表达Cas9内切酶和引导RNA(gRNA)。内切酶Cas9会在gRNA的指导下引入位点特异性的双链断裂,然后细胞通过同源重组进行修复,最终改写基因组的特定位点。 迄今为止,绝大多数CRISPR研究使用酿脓链球菌的Cas9(SpCas9)。SpCas9已经被广泛研究并改良,成功用于多种模式生物和商业性生物。除此之外,人们也鉴定了其他细菌的Cas9核酸酶,比如嗜热链球菌、脑膜炎奈瑟菌和金黄色葡萄球菌。......阅读全文

人体肠道细菌基因组集研究成果

2019年2月5日上午,深圳华大团队在国际知名学术期刊自然旗下子刊自然生物技术上发表了关于人体肠道细菌基因组集(Culturable GenomeReference, CGR)研究成果。该研究提供了1500多条高质量的人体肠道细菌基因组,为肠道微生物组研究提供了大量全新的参考基因组数据,同时

Nature:构造酵母染色体

   合成生物学的目标之一就是构建那些复杂的人工合成有机体。目前,在酵母细胞中已经取得了阶段性的进展——采用分段式方法,研究者已经可以将整个酵母染色体转化成为合成序列了。  生物细胞其实很像是一台计算机——基因组可以比作软件,它负责对细胞的构成进行编码,细胞器则犹如计算机的硬件,负责读取并运行软件的

Nature:用单细胞基因组探索多样性

  宏基因组研究极大地提高了我们对于细菌以及古细菌多样性的理解。然而,环境宏基因组数据往往不容许个别物种的基因组组装,因此,大多数完整的基因组序列来自于培养的微生物。如今,两个新的大规模研究利用单细胞基因组,直接从未培养的环境样本中恢复了细菌和古细菌基因组。   Rinke等人利用荧光活化性细胞分

研究证实细菌DNA可整合至人类基因组

  日前,马里兰大学医学院(University of Maryland School of Medicine)的科学家们找到了细菌基因可偶然性地整合至人类基因组中的强力证据。研究发现,大约 1/3 的健康基因组中含有细菌 DNA 序列,而癌细胞中则更高。从而证实了来自细菌的侧向基因转移(L

与CRISPR/Cas系统相爱相杀的抗CRISPR蛋白研究最新进展

  CRISPR/Cas系统是目前发现存在于大多数细菌与所有的古菌中的一种免疫系统,被用来识别和摧毁抗噬菌体和其他病原体入侵的防御系统。在CRISPR/Cas系统中,CRISPR是规律间隔性成簇短回文重复序列(clustered regularly interspaced short palindr

与CRISPR/Cas系统相爱相杀的抗CRISPR蛋白研究最新进展 一

CRISPR/Cas系统是目前发现存在于大多数细菌与所有的古菌中的一种免疫系统,被用来识别和摧毁抗噬菌体和其他病原体入侵的防御系统。在CRISPR/Cas系统中,CRISPR是规律间隔性成簇短回文重复序列(clustered regularly interspaced short palindr

合成基因组发表两月 部分国际反应

  我们也必须记住,自然界本身就是一名已经存在的专家,她在创造可对人类造成极大危害的微生物。合成生物学的最新进展并不一定会把我们带到比现有技术或自然界本身更接近伤害的道路。  慎重的民主就要听不同的观点,考虑对方的论点,最好找到共同点,至少要尊重不同观点,然后作出决定。面对复杂问题各

人造生命研究又前进了一步

来自日本和意大利的化学家报道说发明出一种自我推进的油滴,该发明可能为给予人造细胞运动的能力奠定了基础。这项由东京大学和Protolife in Venice大学进行的合作研究结果将发表在8月8日的Journal of the American Chemical Society。 Tadashi S

杨国威/杨剑等揭示细菌细胞收缩注射系统多样性特征

  在进化过程中,细菌及其他微生物学可通过其编码的多种分泌系统与宿主相互作用并应对相应的环境改变。细菌细胞外可收缩注射系统(extracellular Contractile Injection System, eCIS),不同于必须锚定在自身细胞膜上的常规CIS系统(如六型分泌系统T6SS),eC

从历史探究病毒的免疫系统

  CRISPR/Cas的工作原理不是很复杂,当病毒感染细菌之后,细菌会把病毒的基因组序列的片段插入自己的基因组里,这样病毒的“模样”就被记录下来了,细菌存放入侵病毒序列的基因区域呈现出“规律间隔成簇短回文重复序列”(Clustered Regularly Interspaced Short Pal

单分子测序助力细菌甲基化组的分析

  New England Biolabs联合Pacific Biosciences的研究人员利用PacBio RS系统对6种细菌基因组进行了重测序,不仅鉴定出细菌基因组中新的胞嘧啶和腺嘌呤甲基化位点,还鉴定出介导这些表观遗传学标志的甲基转移酶。该研究成果近日发表在《Nucleic Acid

Science:宏基因组学测序技术

  宏基因组学技术(Metagenomic approaches)正快速拓宽我们对微生物代谢能力(microbial metabolic potential)的认识。   长期以来,对微生物(microorganism)功能开展的研究主要依赖的都是以在实验室里培养的单一物种(individua

哈尔滨医科大学最新文章:细菌基因组的奥秘

  科学通报,中国科学C辑:生命科学,这两份期刊均是由中国科学院和国家自然科学基金委员会共同主办的,我国学术期刊中的知名品牌,被国内外各主要检索系统收录,如国内的《中国科学论文与引文数据库》(CSTPCD)、《中国科学引文数据库》(CSCD)等;美国的SCI、CA、EI,英国的SA,日本的《科技文献

后微生物组时代 首次发现人体特有的病毒组

  我们人体中的病毒会影响微生物群体的结构和行为,但是关于身体许多区域的噬菌体,也就是感染细菌的病毒,科学家们所知甚少。近期一组研究人员发现,在膀胱中整合进细菌基因组的是噬菌体要比细菌本身多得多,这项出乎人意料的研究发现公布在1月29日的the Journal of Bacteriology杂志上。

生物谷7月份结构生物学研究进展一览

  1. Cell:中科院生物物理所王艳丽/章新政课题组从结构上揭示Cas13a切割RNA机制  doi:10.1016/j.cell.2017.06.050  CRISPR/Cas系统是目前发现存在于大多数细菌与所有的古菌中的一种免疫系统,被用来识别和摧毁抗噬菌体和其他病原体入侵的防御系统。在CR

新生命如何在实验室“被创造”

CFP/图带有人工合成基因组的支原体,这是一种能够自我复制的新物种,科学家称之为“辛西娅”克雷格·文特尔(左)和密尔顿·史密斯是这一划时代实验的负责人创造“辛西娅”团队的主要成员  2010年5月20日,美国私立科研机构克雷格·文特尔研究所的一个科学家小组在美国《科学》杂志上报告

新生命如何在实验室“被创造”

  第三部曲的演奏  克雷格·文特尔研究所的丹尼尔·吉布森小组选取了一种名为丝状支原体的细菌(供体细菌),其基因组只有108万个碱基对。研究人员把它的染色体(DNA)解码,然后利用化学方法一点一点地重新排列这种支原体的DNA序列,即对四个碱基对腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)、胸腺嘧啶(T)

清华大学Nature子刊:将Cas9应用于分子克隆

  在4月21日的《自然实验手册》(Nature Protocols)杂志上,清华大学的朱听(Ting Zhu)研究员与博士生姜文君(Wenjun Jiang)撰文,详细介绍了利用一种叫做Cas9辅助靶向染色体片段(CATCH)的方法,靶向分离及克隆100kb微生物基因组序列的优化实验方案。  朱听

Science:重大突破!构建出有史以来生命所需最小基因组

  为了避免生物学概念上混乱,生物谷小编先梳理一下相关概念。支原体是一种类似细菌但不具有细胞壁的原核微生物,能在无生命的人工培养基上生长繁殖,也是目前发现的最小的最简单的原核生物。它不属于狭义的细菌,即一类形状细短,结构简单,多以二分裂方式进行繁殖的原核生物。它是一类与细菌(狭义)、放线菌、蓝细菌、

中科院“细菌全基因组测序及分析”取得阶段性成果

中科院北京基因组研究所的胡松年研究员和浙江大学医学院附属二院的胡讯教授合作研究的项目“细菌Phenylobacterium zucineum全基因组测序及分析”取得阶段性成果,相关论文发表在今年第9期的BMC Genomics上。 P.zucineum是合作方从K562细胞系中分离到的兼性细菌。系

Nature子刊:新测序技术揭示细菌多样性

  斯坦福大学的研究人员首次将一种新测序技术用于人类肠道微生物组,揭示了惊人的细菌多样性。这项研究发表在十二月十四日的Nature Biotechnology杂志上。  “这些细菌在遗传学上比我们想象的更加多样化,”文章资深作者Michael Snyder教授说。人类个体之间只有千分之一的基因组序列

Nature子刊:基因编辑揭开细菌基因组秘密

  由美国伊利诺伊大学香槟分校化学和生物分子工程系的赵惠民教授(音译,Huimin Zhao)带领的一个研究团队指出,他们利用一种创新的DNA工程技术,发现了隐藏在细菌基因组中的潜在的、有价值的功能。这项研究成果发表在12月5日的Nature Communications杂志上。   每种

是人造生命还是修改生命 “合成细胞”定义引争议

被冠以“人造生命之父”的克雷格·文特,只是认为其团队成功改造了新种类的细胞而已。  15年来,克雷格·文特尔(J. Craig Venter)博士一直追逐着一个梦想:从零开始构建出一个基因组,然后用它创造合成生命。现在,他和Craig Venter研究所(JC

“人造生命”诞生了吗?

  “美国科学家创造出史上第一个人造生命!”这是近日很吸引眼球的一条大新闻。领导这项研究的克雷格·文特本人的说法是:“这是第一个人造细胞,是地球上第一个父母是计算机,却可以自我复制的物种。”  在媒体上推波助澜的还有一些人文学者。他们有的对此推崇备至。例如,美国一位著名生物伦理学家声称这个成就结束了

DNA测序技术的现状和发展(四)

1.1.3.2 模板制备程序完全的体外大规模模板制备工作是达成高通量、低价格测序技术的前提。已广泛使用的乳液PCR扩增技术就是一种很好的方法。不过,由于很难在热循环测序反应中保证乳液微滴的稳定性,因此最开始实验的模板扩增方法是恒温扩增法(isothermal)。乳液PCR不需要借助细菌的帮助就能扩增

Science:健康不健康 看看肠道菌群就知道

  随着研究的深入,我们已经知道在我们的肠道中居住着几千种不同的细菌,并将其称之为肠道菌群,这些肠道细菌的变化对人类健康具有重要影响。但是我们对于这种影响仍然了解较少。  近日,来自魏茨曼研究所的科学家们在著名国际学术期刊science上发表了一项最新研究进展,他们从一个全新的角度阐述了肠道菌群对人

PLOS Genet:单分子测序技术助力原核生物DNA甲基化研究

  近日,刊登在国际杂志PLoS Genetics上的一项研究论文中,来自美国能源部联合基因组研究院的研究人员对230种古细菌和细菌基因组进行了测序,旨在研究DNA甲基化在原核生物中所扮演的关键角色。  细胞的表观基因组是基因组DNA特殊剪辑发生改变的一个特殊集合,这些表观基因组的改变会影响基因组的

利用CRISPR–Cas系统将数字视频存储到一群细菌的基因组中

  科学家们正在努力利用DNA(即生物学生命蓝图)作为合成原材料在活细胞外面存储大量的数字信息。但是如果他们能够诱导活细胞像大的细菌群体那样使用它们自己的基因组作为能够被用来记录信息并且随后在任何时间能够获取这种信息的生物学硬盘,将会怎么样?这样的一种方法可能不仅为数据存储提供全新的可能性,而且也可

12月24日《自然》杂志精选

  封面故事:   2009年度新闻人物   Nature杂志2009年度新闻人物是美国总统奥巴马大胆提名的能源部部长人选朱棣文。这位曾经获得过诺贝尔奖的物理学家受命推动世界最大经济体及其能源行业的变革,以适应21世纪的需要。朱棣文曾在劳伦斯伯克利国家实验室工作4年时间,在这期间,他将该实验

叶克穷:改写大肠杆菌基因组的科学意义究竟几何

   合成生物学家日前报告了迄今为止意义最为深远的一项细菌基因组重写结果:他们成功换下了大肠杆菌64个遗传密码子中的7个,并通过在55个片段中合成脱氧核糖核酸(DNA)从而减少了遗传密码子的数量,科学家们还将这些碎片组装到了另一个有功能的大肠杆菌中。  有人认为这项发表在美国《科学》杂志上的研究成果