NatureCommunications:调控纤毛发生的新机制
近日,Nature Communications刊登了美国梅奥医学中心研究人员关于脂类分子参与调控纤毛发生新机制的研究论文。该研究首次报道了磷脂酰肌醇的一对激酶—磷酸酶组合通过调节磷脂酰肌醇在中心体周围的浓度调控纤毛发生的新机制,此项研究对理解人类纤毛病等疾病的病理机制具有重要意义。 纤毛是一种由纤毛基体向细胞表面伸出的细胞器结构,内部是由微管组成的轴丝,外包有一层与细胞膜相连续但又具有独特分子构成的纤毛膜。纤毛或类纤毛结构广泛分布于动物体内的几乎所有细胞,作为机械力和化学分子探测器,在细胞生命活动的各个方面,尤其是参与调控细胞的增殖、分化、生理活动以及胚胎发育中发挥关键作用。 近年来随着测序技术的快速发展,研究人员发现越来越多的疾病都与纤毛结构异常、功能失调相关,这些疾病被统称为纤毛病。此外,恶性肿瘤以及糖尿病的发生也与纤毛功能异常有关。正因为如此,深入探索纤毛发生的机理不仅对完善生物学基础理论,而且对理解纤毛病等人类......阅读全文
Nature-Communications:-调控纤毛发生的新机制
近日,Nature Communications刊登了美国梅奥医学中心研究人员关于脂类分子参与调控纤毛发生新机制的研究论文。该研究首次报道了磷脂酰肌醇的一对激酶—磷酸酶组合通过调节磷脂酰肌醇在中心体周围的浓度调控纤毛发生的新机制,此项研究对理解人类纤毛病等疾病的病理机制具有重要意义。 纤毛是一
黄开耀博士发表Cell子刊文章:比较分析多种细胞器蛋白
中科院水生生物研究所的研究人员发表了题为“Comparative Analysis of Ciliary Membranes and Ectosomes”的文章,比对分析了关键细胞器结构的蛋白组成,从中发现ESCRT 蛋白介导了微泡释放,从而影响了纤毛的变化,这对于进一步分析纤毛病等相关疾病具有
纤毛小根系统
中文名称纤毛小根系统英文名称rootlet system定 义纤毛虫和鞭毛虫中与鞭毛基体结合的微管系统。应用学科细胞生物学(一级学科),细胞结构与细胞外基质(二级学科)
淡水腹纤毛类的大量培养实验——培养淡水腹纤毛类
实验材料绿梭藻仪器、耗材培养基实验步骤1. 用剃刀或别的刀具将容器的底部割下,尽可能多保留容器壁。2. 尽可能多的切掉盖子的中央,但要保持盖子四周完整。3. 切下比框架大 1~2 英寸的 Nitex 滤膜,以便于安装到框架上。
纤毛——细胞的小雷达
“纤毛疾病”是由编码纤毛-中心体复合体相关蛋白的基因突变所导致的一组疾病,这些疾病可以表现为多囊肾、失明、智力迟滞以及肥胖、糖尿病等。在这篇NEJM的文章Ciliopathies中,作者F. Hildebrandt等人向我们介绍了编码纤毛的基因突变以及下游信号转导通路异常在这些疾病的发生中所起的
概述纤毛的形态特征
从一些原核细胞和真核细胞表面伸出的、能运动的突起。鞭毛较长,数目少;纤毛与鞭毛有相同的结构,但较短,数目多。细菌的鞭毛则有完全不同的结构。 鞭毛一般长约150微米,纤毛5~10微米,两者直径相近,为 0.15~0.3 微米。大多数动物和植物的精子都有鞭毛。精子及许多原生动物都以鞭毛或纤毛为运动
淡水腹纤毛类的大量培养实验——腹纤毛虫的浓缩
实验材料绿梭藻仪器、耗材培养基实验步骤1. 用 45~55 μm 的 Nitex 过滤细胞,除去食物残渣。可用干酪包布代替,但细胞有阻塞的可能。2. 将细胞注入浓缩装置中,轻轻地摇动或颠动滤膜,与底部的液体搅动,并始终与液体接触。3. 当大部分液体除去后,用喷瓶将细胞从滤膜上洗下至烧杯中。4. 一次
磷脂酰肌醇途径
在磷脂酰肌醇信号通路中胞外信号分子与细胞表面G蛋白耦联型受体结合,激活质膜上的磷脂酶C(PLC-β),使质膜上4,5-二磷酸磷脂酰肌醇(PIP2)水解成1,4,5-三磷酸肌醇(IP3)和二酰基甘油(DG)两个第二信使,胞外信号转换为胞内信号,这一信号系统又称为"双信使系统"(double messe
Cell封面文章:视杆纤毛
利用一种称作低温电子断层扫描术(cryo-electron tomography,cryo-ET)的新技术,来自贝勒医学院的两个研究小组构建出了一个三维图谱,使得我们更好地了解了遗传突变导致视杆纤毛(rod sensory cilium,眼睛中一种光感受器的部分)结构改变以及影响感光
纤毛虫的防治方法
医学教育网小编搜集整理了纤毛虫的防治方法,如下: 1.甲醛溶液浸泡用布缝制成网箱状的网套,深1—1.5米,准确计算水体,用200x10—6-300x10—6甲醛+10克/米3呋喃唑酮浸浴30分钟医学教育|网,浸浴时药物先溶解稀释后均匀泼洒,并在浸浴过程中要注意观察病鱼的活动情况,发现异常放掉布网
纤毛纲的主要特征
纤毛纲(Ciliata)是原生动物门的一个纲。纤毛虫分游泳型和固着型两种类型,他们以纤毛作为运动和摄食的细胞器。纤毛虫是原生动物中最高级的一类,它们有固着的、结构细致的摄食细胞器。固着型纤毛虫大多数有肌原纤维,细胞核有大核(营养核)和小核(生殖核)。纤毛的结构与鞭毛相同,其不同点是纤毛较短,数目较多
PNAS:细胞纤毛生长的关键蛋白
细胞表面存在微小而关键的毛发状结构,这一结构被称为纤毛(cilia)。日前,宾州大学和加州大学的研究团队鉴定了纤毛生长所需的关键蛋白,文章于一月二十七日发表在美国国家科学院院刊PNAS杂志上。这一发现对人类健康有重要的启示,因为缺乏纤毛会导致严重的疾病,例如多囊肾病、失明和神经学疾病。 “
关于纤毛的基本内容介绍
纤毛(cilium):是细胞游离面伸出的能摆动的较长的突起,比微绒毛粗且长,在光镜下能看见。一个细胞可有几百根纤毛。纤毛长约5-10μm,粗约0.2μm,根部有一个致密颗粒,称基体(basalbody)。纤毛具有一定方向节律性摆动的能力。许多纤毛的协调摆动像风吹麦浪起伏,把粘附在上皮表分泌物和颗
不动纤毛综合症的简介
发病率约1∶30000~1∶60000。 ICS是一种和遗传有关的纤毛结构缺陷。主要为纤毛蛋白臂或放射辐的缺陷,从而使纤毛运动异常,黏膜上纤毛清除功能障碍,以致造成反复感染。精子尾部是一种特殊的纤毛。当其结构异常时,精子失去运动功能,造成不育。胚胎发育过程中,若纤毛结构异常,由于缺乏正常的纤毛
皮肤纤毛囊肿的症状体征
囊肿通常呈单发性。直径常为数厘米,充满透亮或琥珀色液体。发生于青少年女性的臀部和下肢,个别病例亦见于肩及头部,仅2例发生于男性。
皮肤纤毛囊肿的辅助检查
组织病理:囊肿位于真皮深部或皮下组织,呈单叶或多叶性。常见特点为囊腔内出现乳头状突起。囊肿衬以单层立方到柱状纤毛上皮,有些部位衬以假复层上皮。可见灶状鳞状化生。囊肿周围无皮肤附件、腺性结构或肌纤维。
不动纤毛综合症的病因
不动纤毛综合症为常染色体隐性遗传。现已证实纤毛轴丝含有100多种多肽,任何1种多肽有缺陷,均可造成同样的病理结果。因此具有明显的遗传异质性。有纤毛蛋白臂部分或完全缺失(单纯外侧或内侧纤毛蛋白臂缺失、或双侧均缺失),有放射辐缺陷者,有中央鞘缺失。也有临床症状典型而纤毛超微结构正常者。其中以纤毛蛋白
磷脂酰肌醇的生理作用
DG通过两种途径终止其信使作用:一是被DG-激酶磷酸化成为磷脂酸,进入磷脂酰肌醇循环;二是被DG酯酶水解成单酯酰甘油。由于DG代谢周期很短,不可能长期维持PKC活性,而细胞增殖或分化行为的变化又要求PKC长期活性所产生的效应。现发现另一种DG生成途径,即由磷脂酶催化质膜上的磷脂酰胆碱断裂产生的DG,
什么是磷脂酰肌醇应答?
中文名称磷脂酰肌醇应答英文名称phosphatidylinositol response;PI response定 义磷脂酰肌醇快速再合成的过程。应用学科生物化学与分子生物学(一级学科),脂质(二级学科)
磷脂酰肌醇磷酸的结构定义
中文名称磷脂酰肌醇磷酸英文名称phosphatidylinositol phosphate;PIP定 义存在于真核细胞质膜中的一种磷脂酰肌醇-4-磷酸(肌醇与磷脂酸的1-羟基相连)。是参与信号转导的一类重要磷脂,起着第二信使的作用,能够使信号逐级传递和放大,最终引起细胞的各种生理性或病理性响应。应
磷脂酰肌醇的基本特性
是G蛋白偶联受体的信号转导通路中的一种途径, [3] 在信号通路中胞外信号分子与细胞表面G蛋白耦联型受体结合,激活质膜上的磷脂酶C(PLC-β),使质膜上4,5-二磷酸磷脂酰肌醇(PIP2)水解成1,4,5-三磷酸肌醇(IP3)和二酰基甘油(DG)两个第二信使,胞外信号转换为胞内信号,这一信号系统
磷脂酰肌醇的生理作用
DG通过两种途径终止其信使作用:一是被DG-激酶磷酸化成为磷脂酸,进入磷脂酰肌醇循环;二是被DG酯酶水解成单酯酰甘油。由于DG代谢周期很短,不可能长期维持PKC活性,而细胞增殖或分化行为的变化又要求PKC长期活性所产生的效应。现发现另一种DG生成途径,即由磷脂酶催化质膜上的磷脂酰胆碱断裂产生的DG,
磷脂酰肌醇循环的定义
中文名称磷脂酰肌醇循环英文名称phosphatidylinositol cycle定 义影响某些激素受体系统为特征的一套连锁反应,包括磷脂酰肌醇的降解及其快速再合成。该循环可能与钙的动员偶联。应用学科生物化学与分子生物学(一级学科),脂质(二级学科)
什么是磷脂酰肌醇转换?
中文名称磷脂酰肌醇转换英文名称phosphotidylinositol turnover定 义磷脂酰肌醇经两分子ATP磷酸化,形成磷脂酰肌醇4,5-二磷酸,再在磷脂酶C的催化下产生两个胞内信使二酰甘油和肌醇三磷酸的过程。应用学科生物化学与分子生物学(一级学科),脂质(二级学科)
磷脂酰肌醇的基本特性
化学途径是G蛋白偶联受体的信号转导通路中的一种途径,在信号通路中胞外信号分子与细胞表面G蛋白耦联型受体结合,激活质膜上的磷脂酶C(PLC-β),使质膜上4,5-二磷酸磷脂酰肌醇(PIP2)水解成1,4,5-三磷酸肌醇(IP3)和二酰基甘油(DG)两个第二信使,胞外信号转换为胞内信号,这一信号系统又称
磷脂酰肌醇转换的概念
中文名称磷脂酰肌醇转换英文名称phosphotidylinositol turnover定 义磷脂酰肌醇经两分子ATP磷酸化,形成磷脂酰肌醇4,5-二磷酸,再在磷脂酶C的催化下产生两个胞内信使二酰甘油和肌醇三磷酸的过程。应用学科生物化学与分子生物学(一级学科),脂质(二级学科)
磷脂酰肌醇的生理作用
DG通过两种途径终止其信使作用:一是被DG-激酶磷酸化成为磷脂酸,进入磷脂酰肌醇循环;二是被DG酯酶水解成单酯酰甘油。由于DG代谢周期很短,不可能长期维持PKC活性,而细胞增殖或分化行为的变化又要求PKC长期活性所产生的效应。现发现另一种DG生成途径,即由磷脂酶催化质膜上的磷脂酰胆碱断裂产生的D
淡水腹纤毛类的大量培养实验
实验材料 绿梭藻仪器、耗材 培养基实验步骤 1. 制备无菌藻类培养基。2. 在带金属帽装有 25 ml 藻类培养基的 18 mm X 150 mm 的试管中接种绿梭藻。从原种或绿梭藻培养皿接种。3.在植物生长光照下大约 1 周,最长不超过 2 周时,取出试管。用 0.5 ml 无菌培养物接种装有培养
淡水腹纤毛类的大量培养实验
伸展绿梭藻的生长 绿梭藻的浓缩 培养淡水腹纤毛类 腹纤毛虫的浓缩 实验材料 绿梭藻
不动纤毛综合症的发病机制
ICS是一种和遗传有关的纤毛结构缺陷。主要为纤毛蛋白臂或放射辐的缺陷,从而使纤毛运动异常,黏膜上纤毛清除功能障碍,以致造成反复感染。