Antpedia LOGO WIKI资讯

新英格兰医学:新成像扫描持续跟踪癌细胞

头颈癌的患者可能不再需要用侵入性的治疗后处理的手术以清除剩余的癌细胞,创新性的扫描引导检测可以帮助鉴定在颈部淋巴清扫术的需要,并进行引导。 Birmingham 和Warwick大学发表在新英格兰医学杂志上的研究,使用了先进的成像技术识别头颈部癌症在原发性化疗治疗后仍然存在的癌细胞。 头颈部癌症和PET-CT 头部和颈部癌症的90%是鳞状细胞癌,称为头颈部鳞状细胞癌(鳞癌)。它在全球范围内的发病率中是第六大癌症,估计每年有报告的50万新病例。以前的指导方案意味着所有的头颈部癌症患者都必须接受颈淋巴清扫术,一个三小时的手术需要一周的住院时间,但仍有相当的发病率,应为没有可靠的方法来确定患者是否仍然后剩余的癌细胞。 PET-CT是PET扫描仪和螺旋CT设备功能的一体化完美融合。由PET提供病灶详尽的功能与代谢等分子信息,而CT提供病灶的精确解剖定位,一次显像可获得全身各方位的断层图像。 由于肿瘤细胞代谢活跃,摄取显像剂......阅读全文

扫描电镜成像原理

  扫描电镜成像原理   从电子枪阴极发出的电子束,经聚光镜及物镜会聚成极细的电子束(0.00025微米-25微米),在扫描线圈的作用下,电子束在样品表面作扫描,激发出二次电子和背散射电子等信号,被二次电子检测器或背散射电子检测器接收处理后在显象管上形成衬度图象。二次电子像和背反射电子反映样品表面微

扫描成像的原理

其探测波段可包括紫外、红外、可见光和微波波段,成像方式有三种。

扫描电镜的成像原理

扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。通过对这些信息的接受、放大和显示成像,获得测试试样表面形貌的观察。当一束极细的高能入射电子轰击扫描样品表面时,被激发的区域将产生二次电子、俄歇电子、特征x射线和连续谱X射线、背散射电子、透射电子,以及在可见、紫外、红

扫描电镜的成像原理

扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。通过对这些信息的接受、放大和显示成像,获得测试试样表面形貌的观察。当一束极细的高能入射电子轰击扫描样品表面时,被激发的区域将产生二次电子、俄歇电子、特征x射线和连续谱X射线、背散射电子、透射电子,以及在可见、紫外、红

扫描电镜的成像原理

扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。通过对这些信息的接受、放大和显示成像,获得测试试样表面形貌的观察。当一束极细的高能入射电子轰击扫描样品表面时,被激发的区域将产生二次电子、俄歇电子、特征x射线和连续谱X射线、背散射电子、透射电子,以及在可见、紫外、红

扫描电镜的成像原理

扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。通过对这些信息的接受、放大和显示成像,获得测试试样表面形貌的观察。当一束极细的高能入射电子轰击扫描样品表面时,被激发的区域将产生二次电子、俄歇电子、特征x射线和连续谱X射线、背散射电子、透射电子,以及在可见、紫外、红

扫描电镜的成像原理

扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。通过对这些信息的接受、放大和显示成像,获得测试试样表面形貌的观察。当一束极细的高能入射电子轰击扫描样品表面时,被激发的区域将产生二次电子、俄歇电子、特征x射线和连续谱X射线、背散射电子、透射电子,以及在可见、紫外、红

扫描电镜的成像原理

扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。通过对这些信息的接受、放大和显示成像,获得测试试样表面形貌的观察。当一束极细的高能入射电子轰击扫描样品表面时,被激发的区域将产生二次电子、俄歇电子、特征x射线和连续谱X射线、背散射电子、透射电子,以及在可见、紫外、红

扫描电镜低加速电压成像

扫描电镜的加速电压与束流强度对成像有着决定性的影响。 通常来说,操作人员更愿意使用更高的加速电压去成像,当加速电压较大时,信噪比更好,分辨率更高,更容易得到“清晰”的图像。但低加速电压却是当今扫描电镜的发展趋势,这是什么原因呢?今天,这篇文章将围绕“低加速电压成像”展开讨论。 电子束与样品相互作用将

太赫兹近场扫描显微成像技术

太赫兹(Terahertz, THz)辐射通常是指频率范围处于0.1—10THz的电磁辐射,其波段位于电磁波谱中的微波和红外之间。近年来,太赫兹技术得到了迅猛发展和广泛应用,成为前沿交叉学科领域之一。太赫兹波由于光子能量很低、具有非破坏性和非等离特性,使得太赫兹在材料检测和无损探测方面有着广泛应