布鲁克发布基于原子力显微镜平台的扫描电化学显微镜
分析测试百科网讯 近日,布鲁克的纳米表面部门发布了Dimension Icon®原子力显微镜平台上的扫描电化学显微镜(SECM)。使用独有的探针设计,布鲁克的新PeakForce扫描电化学显微镜能够精确地控制针尖与样品的相互作用,针对以前难以观测的氧化还原反应和其中的反应动力学提供纳米表面,电化学反应,电学和机械的同步图像,这种特性能提供纳米级的观测。 “我们的客户过去一直想在Dimension Icon®原子力显微镜上使用新的高分辨率纳米电极。”布鲁克纳米表面部门的资深应用科学家,Teddy Huang博士说道。“从今往后我们就能够捕捉到电化学与纳米力学之间的联系,能够理解纳米材料与材料尺寸、几何构造、模量系数、附着力和材料活性之间复杂的关系。” “PeakForce扫描电化学显微镜从根本上重新定义了溶液中可能发生什么样的纳米级的电学和化学过程。”负责布鲁克原子力显微镜仪器生意的副主席兼总经理,Marco Torton......阅读全文
扫描原子力显微镜(AFM)
扫描原子力显微镜(AFM)可以对纳米薄膜进行形貌分析,分辨率可以达到几十纳米,比STM差,但适合导体和非导体样品,不适合纳米粉体的形貌分析。
布鲁克发布基于原子力显微镜平台的扫描电化学显微镜
分析测试百科网讯 近日,布鲁克的纳米表面部门发布了Dimension Icon®原子力显微镜平台上的扫描电化学显微镜(SECM)。使用独有的探针设计,布鲁克的新PeakForce扫描电化学显微镜能够精确地控制针尖与样品的相互作用,针对以前难以观测的氧化还原反应和其中的反应动力学提供纳米表面,电化
压电扫描管扫描器在AFM原子力显微镜中的应用
随着纳米科技的不断发展,原子力显微镜由于其自身的诸多优点被广泛应用于微观领域的观测与操作,AFM等微纳米级测量仪器已成为微纳米研究工作者重要的科研工具。原子力显微镜的扫描精度在很大程度上取决于内部压电陶瓷管扫描器的性能以及压电控制器的控制精度。
电化学显微镜特点及应用分析
电化学显微镜为表面科学测量提供了一个新的途径,开尔文探针是一种无接触,无破坏性的仪器,可以用于测量导电的、半导电的,或涂覆的材料与试样探针之间的功函差。 这种技术是用一个振动电容探针来工作的,通过调节一个外加的前级电压可以测量出样品表面和扫描探针的参比针尖之间的功函差。 功函和表面状况有直接关系的
布鲁克推出全新XR系列SPM-拓展纳米材料表征界限
分析测试百科网讯 近日,布鲁克宣布推出Dimension XR™系列扫描探针显微镜(SPM)。新系统主要是AFM系统方面创新,包括布鲁克独有的DataCube纳米电子模式,用于能源研究的AFM-SECM,以及全新的AFM-nDMA模式,该模式首次将聚合物纳米力学与体动力学机械分析(DMA)相关联
原子力显微镜(AFM)概述
原子力显微镜(AFM)概述最早扫描式显微技术(STM)使我们能观察表面原子级影像,但是STM 的样品基本上要求为导体,同时表面必须非常平整, 而使STM 使用受到很大的限制。而目前的各种扫描式探针显微技术中,以原子力显微镜(AFM)应用是最为广泛,AFM 是以针尖与样品之间的属于原子级力场作用力,所
原子力显微镜(AFM)分类
在原子力显微镜(AFM)成像模式中,根据针尖与样品间作用力的不同性质可分为:接触模式,非接触模式,轻敲模式。 (1)接触成像模式:针尖在扫描过程中始终同样品表面接触。 针尖和样品间的相互作用力为接触原子间电子的库仑排斥力(其力大小为10-8~10-6N)。优点为图像稳定,分辨率高,缺点为由于
原子力显微镜(AFM)综述
原子力显微镜(AFM)综述最早扫描式显微技术(STM)使我们能观察表面原子级影像,但是 STM 的样品基本上要求为导体,同时表面必须非常平整, 而使 STM 使用受到很大的限制。而目前的各种扫描式探针显微技术中,以原子力显微镜(AFM)应用是最为广泛,AFM 是以针尖与样品之间的属于原子级力场作用力
电化学扫描探针显微镜技术在电催化中的应用
电催化剂的整体性能主要取决于其中的活性位点、即对反应中间体具有最佳的吸附性能的(表面)原子的排列顺序。活性位点的性质受许多因素的影响,比如表面配位、应变效应、配体效应、集团效应和电解质组成。因此,对于活性位点的研究要通过实验和计算来进一步理解极化的固/液界面处的电化学反应过程,这就需要获取
NX12多功能显微镜产品详细说明
多功能显微镜平台,用于化学分析研究和用户共享设备 原子力显微镜(AFM)适用于电,磁,热和机械性能测量能力的纳米分辨率成像。 纳米管扫描系统适用于高分辨率扫描离子电导显微镜(SICM),扫描电化学显微镜(SECM)和扫描电化学池显微镜(SECCM)。 倒置光学显微镜(IOM)用于透明材料研
扫描隧道显微镜(STM)与原子力显微镜(AFM)对比
扫描隧道显微镜(scanning tunneling microscope,缩写为STM),亦称为扫描穿隧式显微镜,是一种利用量子理论中的隧道效应探测物质表面结构的仪器。它于1981年由格尔德·宾宁及海因里希·罗雷尔在IBM位于瑞士苏黎世的苏黎世实验室发明,两位发明者因此与恩斯特·鲁斯卡
原子力显微镜(AFM)的原理
原子力显微镜/AFM的基本原理原子力显微镜/AFM的基本原理是:将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,针尖与样品表面轻轻接触,由于针尖尖端原子与样品表面原子间存在极微弱的排斥力,通过在扫描时控制这种力的恒定,带有针尖的微悬臂将对应于针尖与样品表面原子间作用力的等位面而在垂直于样
原子力显微镜(AFM)的原理
原子力显微镜/AFM的基本原理原子力显微镜/AFM的基本原理是:将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,针尖与样品表面轻轻接触,由于针尖尖端原子与样品表面原子间存在极微弱的排斥力,通过在扫描时控制这种力的恒定,带有针尖的微悬臂将对应于针尖与样品表面原子间作用力的等位面而在垂直于样
原子力显微镜(AFM)的原理
原子力显微镜/AFM的基本原理是:将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,针尖与样品表面轻轻接触,由于针尖尖端原子与样品表面原子间存在极微弱的排斥力,通过在扫描时控制这种力的恒定,带有针尖的微悬臂将对应于针尖与样品表面原子间作用力的等位面而在垂直于样品的表面方向起伏运动.利用光学
原子力显微镜(AFM)的原理
原子力显微镜(AFM)的基本原理是:将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,针尖与样品表面轻轻接触,由于针尖尖端原子与样品表面原子间存在极微弱的排斥力,通过在扫描时控制这种力的恒定,带有针尖的微悬臂将对应于针尖与样品表面原子间作用力的等位面而在垂直于样品的表面方向起伏运动。选择原
原子力显微镜(AFM)的原理
原子力显微镜/AFM的基本原理原子力显微镜/AFM的基本原理是:将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,针尖与样品表面轻轻接触,由于针尖尖端原子与样品表面原子间存在极微弱的排斥力,通过在扫描时控制这种力的恒定,带有针尖的微悬臂将对应于针尖与样品表面原子间作用力的等位面而在垂直于样
什么是原子力显微镜(AFM)?
p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; line-height: 19.0px; font: 13.0px 'Helvetica Neue'}原子力显微镜(Atomic Force Microscope ,AFM),一种可用来研究包括绝缘体在内的固体材料表面结构
原子力显微镜(AFM)的原理
原子力显微镜(AFM)的基本原理是:将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,针尖与样品表面轻轻接触,由于针尖尖端原子与样品表面原子间存在极微弱的排斥力,通过在扫描时控制这种力的恒定,带有针尖的微悬臂将对应于针尖与样品表面原子间作用力的等位面而在垂直于样品的表面方向起伏运动。选择原
原子力显微镜(AFM)的原理
原子力显微镜(AFM)的基本原理是:将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,针尖与样品表面轻轻接触,由于针尖尖端原子与样品表面原子间存在极微弱的排斥力,通过在扫描时控制这种力的恒定,带有针尖的微悬臂将对应于针尖与样品表面原子间作用力的等位面而在垂直于样品的表面方向起伏运动。选择原
原子力显微镜(AFM)的原理
原子力显微镜/AFM的基本原理原子力显微镜/AFM的基本原理是:将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,针尖与样品表面轻轻接触,由于针尖尖端原子与样品表面原子间存在极微弱的排斥力,通过在扫描时控制这种力的恒定,带有针尖的微悬臂将对应于针尖与样品表面原子间作用力的等位面而在垂直于样
原子力显微镜(AFM)应用举例
1, Lateral Force Microscopy 测量样品表面的摩擦力。2, 活体细胞测量3, chemical force microscopy 测量两个化合物之间的作用力。4, quantitative nanomechanical 测量样品的形貌、模量、表面粘滞力、能量损失和形变量。5
如何激光检测原子力显微镜/AFM/AFM探针工作
二极管激光器发出的激光束经过光学系统聚焦在微悬臂(Cantilever)背面,并从微悬臂背面反射到由光电二极管构成的光斑位置检测器(Detector)。在样品扫描时,由于样品表面的原子与微悬臂探针尖端的原子间的相互作用力,微悬臂将随样品表面形貌而弯曲起伏,反射光束也将随之偏移,因而,通过光电二极管检
扫描隧道显微镜(STM)与原子力显微镜(AFM)的对比
1.1 STM工作原理扫描隧道显微镜的基本原理是将原子线度的极细探针和被研究物质的表面作为两个电极,当样品与针尖的距离非常接近(通常小于1nm)时,在外加电场的作用下,电子会穿过两个电极之间的势垒流向另一电极。尖锐金属探针在样品表面扫描,利用针尖-样品间纳米间隙的量子隧道效应引起隧道电流与间隙大小呈
原子力显微镜(AFM)与扫描隧道显微镜(STM)的差别
原子力显微镜(AFM)与扫描隧道显微镜(STM)最大的差别在于并非利用电子隧道效应,而是利用原子之间的范德华力(Van Der Waals Force)作用来呈现样品的表面特性。假设两个原子中,一个是在悬臂(cantilever)的探针尖端,另一个是在样本的表面,它们之间的作用力会随距离的改变而变化
对比学习扫描隧道显微镜(STM)与原子力显微镜(AFM)
1 STM 1.1 STM工作原理 扫描隧道显微镜的基本原理是将原子线度的极细探针和被研究物质的表面作为两个电极,当样品与针尖的距离非常接近(通常小于1nm)时,在外加电场的作用下,电子会穿过两个电极之间的势垒流向另一电极。 尖锐金属探针在样品表面扫描,利用针尖-样品间纳米间隙的量子隧道效
原子力显微镜(AFM)之力检测部分
在原子力显微镜(AFM)的系统中,所要检测的力是原子与原子之间的范德华力。所以在本系统中是使用微小悬臂(cantilever)来检测原子之间力的变化量。这微小悬臂有一定的规格,例如:长度、宽度、弹性系数以及针尖的形状,而这些规格的选择是依照样品的特性,以及操作模式的不同,而选择不同类型的探针。
原子力显微镜(AFM)之敲击模式
敲击模式:敲击模式介于接触模式和非接触模式之间,是一个杂化的概念。悬臂在试样表面上方以其共振频率振荡,针尖仅仅是周期性地短暂地接触/敲击样品表面。这就意味着针尖接触样品时所产生的侧向力被明显地减小了。因此当检测柔嫩的样品时,AFM的敲击模式是最好的选择之一。一旦AFM开始对样品进行成像扫描,装置随即
原子力显微镜(AFM)之纳米加工
扫描探针纳米加工技术是纳米科技的核心技术之一,其基本的原理是利用SPM的探针-样品纳米可控定位和运动及其相互作用对样品进行纳米加工操纵,常用的纳米加工技术包括:机械刻蚀、电致/场致刻蚀、浸润笔等。