新技术绘制脑神经“布线图”

据英国《每日邮报》4月12日报道,英国研究人员开发出一种新技术,可助研究人员绘制出大脑神经连接的线路并弄清其主要功能,使揭开大脑之谜、开发出计算机大脑模型的梦想离现实又近了一步。相关论文发表在4月11日的《自然》杂志网站上。 这项研究属于“神经连接组学”(connectomics),是神经科学领域近年来刚刚兴起的一个新兴学科。与基因组学要研究、绘制人体基因图谱类似,神经连接组学的基础是研究和绘制出大脑神经细胞连接(即突触)的图谱,类似于电脑等电子设备中的布线。科学家希望通过绘制出这些线路并弄清其发挥功能的方式,了解大脑产生认知、感觉以及思想的过程和机理,进而为阿尔茨海默病、精神分裂症以及中风等疾病的治疗提供帮助。 然而,对于动物身上最为精密和负责的器官——大脑来说这绝非易事。据了解,在大脑中大约有1000亿个神经元,其中每一个又与数千个其他神经细胞相连,如果这么计算的话,大脑里至少有150万亿个突......阅读全文

实验鼠内耳发现三种新神经元-有助开发听觉障碍新疗法

  据美国每日科学网站近日报道,瑞典研究人员确定了实验鼠外周听觉系统中的4种神经元,其中3种为新发现的。他们指出,对这些细胞进行分析有望带来针对各种听力障碍的新疗法。研究发表于近期《自然·通讯》杂志。  当声音到达内耳时,它被转换成电信号,通过耳蜗中的耳朵神经细胞传递到大脑。以前,这些细胞大多数被认

《科学》:寻找记忆的根源秘密

来自美国斯克利普斯研究院(Scripps Research Institute)细胞生物学系的研究人员解答了一个长久以来就存在的有关记忆的问题:记忆的学习和取回是否激活的是相同的神经元?他们利用转基因小鼠发现这两种情况下激活的是相同的神经元。这一研究成果公布在《Science》杂志上。 原文检索:

视网膜神经细胞再生疗法或可治疗严重眼疾

复旦大学附属眼耳鼻喉科医院眼科研究院院长卢奕教授与加州大学圣地亚哥分校张康教授团队携手,阐述在应用视网膜神经细胞重编程、再生疗法用于治疗严重眼部疾病研究方面取得重大进展,最新一期国际权威顶级期刊《新英格兰医学杂志》( 《NEJM杂志》 )刊发综述,对这项研究成果作了重点介绍。视网膜对人类的视觉至

星形胶质细胞是否可转化为功能性神经细胞

 德国慕尼黑大学、亥姆霍兹慕尼黑中心组成的一个研究小组18日宣布在脑细胞再生研究方面取得新进展:使用特殊的转录因子可使大脑皮层的星形胶质细胞转化为功能性神经细胞。这一成果将有助于老年痴呆症或中风等疾病的新疗法研究。     由亥姆霍兹慕尼黑中心干细胞研究所所长玛格达莱娜·格茨领导的这个研究小组在一期

星形胶质细胞可转化为功能性神经细胞

  德国慕尼黑大学、亥姆霍兹慕尼黑中心组成的一个研究小组18日宣布在脑细胞再生研究方面取得新进展:使用特殊的转录因子可使大脑皮层的星形胶质细胞转化为功能性神经细胞。这一成果将有助于老年痴呆症或中风等疾病的新疗法研究。   由亥姆霍兹慕尼黑中心干细胞研究所所长玛格达莱娜·格茨领导的这

Nature:有毒脑细胞会引发神经退行性疾病

  虽然我们大多数人没有听说过星形胶质细胞,但是在人类大脑中这些细胞的数量是神经细胞的四倍。近期由斯坦福大学医学院研究人员领导的一个团队发现,在大脑中执行许多不可或缺功能的星形胶质细胞可能同时也具有恶性特征,能破坏神经细胞,并引发许多神经退行性疾病。  这一研究成果公布在1月18日的Nature杂志

PNAS:阿尔茨海默症早期的神经元代谢

  在阿尔茨海默症中,糖、脂肪和钙离子的代谢受到破坏,而这会导致神经元的死亡。内质网与线粒体的连接对于细胞能量代谢很重要,现在瑞典Karolinska医学院的研究人员首次向人们展示了,这种连接在阿尔茨海默症早期发生的改变,揭示了神经元代谢与阿尔茨海默症发展的关联。文章将发表在美国国家科学院院刊PNA

Nature突破传统观点:移植神经元的融合

  移植胚胎神经细胞可以连接到发育好了的成年小鼠视觉皮层上,并且随时间发展,促进它们对视觉线索的敏感度。这一研究成果公布在10月26日的Nature杂志上。这项研究打破了之前认为大脑无法自我修复的观点,证明了移植胚胎神经元能重建受损的成年小鼠大脑中的回路,并恢复其功能。  来自法国国家健康研究所和医

Nature突破传统观点:移植神经元的融合

移植胚胎神经细胞可以连接到发育好了的成年小鼠视觉皮层上,并且随时间发展,促进它们对视觉线索的敏感度。这一研究成果公布在10月26日的Nature杂志上。这项研究打破了之前认为大脑无法自我修复的观点,证明了移植胚胎神经元能重建受损的成年小鼠大脑中的回路,并恢复其功能。来自法国国家健康研究所和医学研究院

Cell子刊:中枢神经再生新希望

  近日,加拿大蒙特利尔罕见疾病研究所(IRCM)的Dr. Frédéric Charron领导研究人员发现了神经细胞胚胎发育的内部控制,该文章发表在Cell旗下的Neuron杂志上。这项突破性研究有望帮助人们开发新工具,在受损的中枢神经系统中修复和再生神经细胞。   Dr. Charro

PTRB:-影响神经细胞功能的囊泡

  近日研究发现,微小囊泡中含有保护性物质,显然,其在神经元的功能上传送神经细胞起着非常重要的作用。细胞生物学家发现,神经细胞会寻求邻近的神经胶质细胞小囊泡的援助用来抵御压力和其他潜在的有害因素。这些囊泡称为外核体,似乎在不同水平上刺激神经元:它们影响电刺激传导,生化信号传递和基因调控。外核体因此是

Nature:美学者绘制三维鼠脑图

  在老鼠的大脑中,7000万个神经细胞看起来就像是一团乱麻,但研究人员正在揭示在整个器官中传递信息的单个线程。10月27日发布的一幅名为“鼠光”的三维大脑图谱,使研究人员能够追踪单个神经细胞的路径,并最终揭示大脑是如何收集信息的。   这张图谱包含了300个神经细胞,研究人员计划在明年增加700

Nature子刊:糖溶液帮你看穿组织样本

  日本研究人员开发了一种新型糖溶液,可以在短短三天内,将组织样本变为透明,而且这种溶液不会干扰样本原有的形态和化学性质。研究人员将这一溶液与荧光显微镜结合,以空前的分辨率对小鼠大脑进行了分析,得到了小鼠大脑的详细图像。   日本RIKEN发育生物学中心的研究团队,将这项研究发表在六月二十三日的N

关于神经细胞简介

  虽然神经元形态与功能多种多样,但结构上大致都可分成细胞体(soma)和突起(neurite)两部分。突起又分树突(dendrite)和轴突(axon)两种。轴突往往很长,由细胞的轴丘(axon hillock)分出,其直径均匀,开始一段称为始段,离开胞体若干距离后始获得髓鞘,成为神经纤维,习惯上

神经细胞分散培养

一、设备无菌操作设备。二、大型设备CO2培养箱恒温5%、10%CO2维持培养液中pH值倒置显微镜:用于每天观察贴壁细胞生长情况解剖显微镜,用于准确地取材常温冰箱:-4℃,用于保存各种培养液,解剖液和鼠尾胶低温冰箱:-20℃--80℃,用于储存血清酶,贵重物品和试剂电热干烤箱:用于消毒玻璃器皿高压消毒

Nature重要成果-解析神经元的超快内吞

  神经细胞通过小囊泡相互传递神经信号,犹他大学和德国生物学家合作,发现神经细胞循环利用这些囊泡的新机制。研究显示,与此前提出的两种回收机制相比,新机制要快得多。文章于十二月四日发表在Nature杂志上。   在小鼠脑细胞释放神经信号时,研究人员将其快速冷冻,并通过电镜对脑细胞成像。他们发现,小囊

《自然》2016热点技术—精准光遗传学

  《Nature Methods》盘点2015年度技术,选出了最受关注的技术成果:单粒子低温电子显微镜(cryo-EM)技术。 除此之外,也整理出了2016年最值得关注的几项技术,分别为:细胞内蛋白标记(Protein labeling in cells)、细胞核结构(Unraveling nuc

从斑马鱼身上竟然获得治疗帕金森的方法

   与哺乳动物相比,成年斑马鱼会使大脑中的神经元再生,但这种能力的程度和变异性尚不清楚。来自Edinburgh大学脑神经科学研究中心的Thomas Becker及其研究团队探寻了各种多巴胺能神经元群体的丧失是否足以触发神经元的功能性再生。 他们的研究结果为未来治疗具有运动异常、震颤等症状的神经系统

Cell子刊惊人发现:抄近道的细胞通讯

  来自海德堡大学、波恩大学的科学家们组成的一个研究小组发现,某些神经细胞采取抄近路的方式来传递信息:信号并未通过细胞的中心,而是绕过它在一条旁路上传导。由此,他们揭示了一种从前未知的神经细胞形状。这些研究结果发表在9月17日的《神经元》(Neuron)杂志上。  神经细胞利用电信号来进行通讯。通过

解析神经元强韧的秘密

  人体中的神经细胞可以达到1米长,而且不会发生断裂或瓦解,是什么让神经细胞如此强韧呢?   日前,伊利诺伊大学(University of Illinois)的研究人员发现,细胞骨架成分中的一种独特修饰,让神经元上长长的轴突特别强韧,这一发现将帮助人们更好的对神经退行性疾病进行治疗。相关论文

复旦学者发现灵长类大脑发育规律

  记者近日从复旦大学获悉,该校脑科学研究院、医学神经生物学国家重点实验室教授杨振纲率领课题组,在大脑皮质发育研究方面取得新进展。   研究人员发现,同为灵长类的人类和猕猴的大脑皮质的抑制性神经元,均起源于胚胎时期的基底神经节隆起部位,而不是科学界长期以来所认为的来自大脑皮质本身。该成果可能为治疗

复旦大学杨振纲课题组发现灵长类大脑发育规律

  记者近日从复旦大学获悉,该校脑科学研究院、医学神经生物学国家重点实验室教授杨振纲率领课题组,在大脑皮质发育研究方面取得新进展。   研究人员发现,同为灵长类的人类和猕猴的大脑皮质的抑制性神经元,均起源于胚胎时期的基底神经节隆起部位,而不是科学界长期以来所认为的来自大脑皮质本身。该成果可能为治疗

JCI:帕金森病可能起源于肠道

  帕金森病(Parkinson’s disease,PD)是一种常见的神经退行性疾病。黑质纹状体多巴胺能神经元死亡,多巴胺(DA)分泌减少和路易小体的形成是帕金森病的重要病理特征。最近,科学家的研究频频将这种脑部疾病与肠道联系起来。肠道微生物,或者连接胃和脑的迷走神经似乎都与帕金森病密切相关。  

《自然》:电刺激如何让瘫痪者重新行走

 两名患者在脊髓被刺激后重新开始行走。图片来源:JIMMY RAVIER 用电刺激脊髓后,瘫痪者突然又能行走了。这一听起来像科幻小说的场景正在成为现实。如今,科学家已经确定了对脊髓受损小鼠“起作用”的神经细胞群,这可能为治疗瘫痪打开大门。 未参与该工作的美国华盛顿大学神经科学家Sara

研究发现大脑中的“数学神经元”

德国图宾根大学和波恩大学最近进行的一项研究表明,大脑中的神经元会在特定的数学运算中被激活。研究结果显示,一些被检测到的神经元只在做加法时活跃,而另一些则在做减法时活跃。相关研究成果2月14日发表于《当代生物学》。     众所周知,3个苹果加2个苹果等于5个苹果。然

研究发现大脑中的“数学神经元”

德国图宾根大学和波恩大学最近进行的一项研究表明,大脑中的神经元会在特定的数学运算中被激活。研究结果显示,一些被检测到的神经元只在做加法时活跃,而另一些则在做减法时活跃。相关研究成果2月14日发表于《当代生物学》。     众所周知,3个苹果加2个苹果等于5个苹果。然

研究发现大脑中的“数学神经元”

  德国图宾根大学和波恩大学最近进行的一项研究表明,大脑中的神经元会在特定的数学运算中被激活。研究结果显示,一些被检测到的神经元只在做加法时活跃,而另一些则在做减法时活跃。相关研究成果2月14日发表于《当代生物学》。  众所周知,3个苹果加2个苹果等于5个苹果。然而,在这样的计算过程中,大脑发生了什

研究发现大脑中的“数学神经元”

德国图宾根大学和波恩大学最近进行的一项研究表明,大脑中的神经元会在特定的数学运算中被激活。研究结果显示,一些被检测到的神经元只在做加法时活跃,而另一些则在做减法时活跃。相关研究成果2月14日发表于《当代生物学》。众所周知,3个苹果加2个苹果等于5个苹果。然而,在这样的计算过程中,大脑发生了什么?波恩

Nat-Biotechnol:干细胞开发出可产血清素的神经元

  近日,来自美国威斯康星大学的研究人员通过研究开发了一种可以制造血清素的特殊神经细胞,血清素是一种在大脑中扮演多种重要角色的化学物质,其可以影响机体情绪、睡眠、焦虑、抑郁、食欲等表现,同时也在很多严重的精神性疾病中扮演者重要作用,比如精神分裂症和双相情感障碍等。  研究者Su-Chun Zhang

Cell:iPSC为疾病研究插上翅膀

  来自美国的一个研究人员小组,更清楚地会描绘出了基因-环境相互作用如何杀死多巴胺生成神经细胞的画面,并鉴别出了一个保护神经元免于农药伤害的分子。多巴胺是一种向控制运动和协调的大脑区域发送信息的神经递质。新研究结果在线发表在11月27日的《细胞》(Cell)杂志上。   麻省理工学院生物学教授Ru