研究揭示植物抗虫机制

已知动物和人在一生中免疫反应由盛到衰,这一现象被称为免疫衰老。一个有趣的问题是,植物的抗虫能力是否也会衰退呢?中科院上海植物生理生态研究所陈晓亚院士课题组在一项研究中发现了植物抗虫反应的这种时序性变化及调控机制。1月9日,相关研究成果在线发表于《自然—通讯》。 茉莉素是最重要的植物抗虫激素之一,在正常情况下,茉莉素信号处于静止状态。当植物遭受昆虫袭击时,一类被称为JAZ的蛋白迅速降解,释放茉莉素信号从而激发抗虫反应。陈晓亚、毛颖波领导的课题组分析了模式植物拟南芥在不同生长期的抗虫能力,发现防御响应由强变弱,但抗虫性却由弱变强。通过与该所王佳伟课题组合作,研究人员发现微小核酸miR156在茉莉素信号输出过程中具有重要的调控作用。 miR156被称为植物的年龄因子,其水平随着植物的生长稳步下降,导致所靶向的SPL蛋白含量逐渐升高,促进植物的成熟并最终进入生殖期开花结果。研究发现,SPL能够与防御开关蛋白JAZ结合并阻碍其降解......阅读全文

茉莉素:激活植物防御反应

谢道昕(右一)与课题组成员在实验中。 在长期的演化过程中,植物获得了复杂而精巧的机制调控可塑性生长能力,以增强其对多变复杂环境的适应性。激素对于植物的新陈代谢、生长发育和繁衍生息等各种生命活动起重要调节作用。阐明植物激素的感知及其调控植物生长发育和防御反应的机制,是植物生物学的前沿领域。

免疫细胞抗衰老

  免疫细胞能够高效识别并清除体内衰老、凋亡的细胞,从而维持机体内环境的稳定,防止衰老相关疾病的发生。免疫细胞本身可以分泌多种细胞因子,增强活化机体免疫系统,调节免疫平衡。

动物试验表明:尿石素能逆转免疫系统衰老

原文地址:http://news.sciencenet.cn/htmlnews/2023/9/508104.shtm

上海生科院发现植物抗虫调控新机制

  植物固着生长,演化出多种防御策略来抵御病虫害,适应干旱、高温等环境变化。许多昆虫以植物为食,虫害给农作物生产带来巨大损失。然而过于活跃的防御反应大量消耗能量,影响植物正常的生长及繁衍。因此,生长和防御是一个相互制约、此消彼长的动态过程。植物从发芽、生长到开花结实,可能遭遇不同种群不同密度的昆虫侵

茉莉素调控番茄抗根结线虫机制获揭示

原文地址:http://news.sciencenet.cn/htmlnews/2023/3/495214.shtm北京农学院设施园艺团队阐明了JA通过调控黄酮醇合成抑制子MYB57和激活子MYB108/112精细控制番茄地下部山柰酚的含量,以权衡侧根的发育和抗性的提升。日前,相关研究发表在《新植物

免疫细胞缺陷或为衰老元凶!

T 细胞可以保护人体免受病原体侵害,但一项在小鼠身上进行的研究表明,T 细胞也可能是加速衰老的元凶。而通过阻断细胞引起的炎症或增加关键代谢分子的供应,可以减轻小鼠体内一些与衰老相关的症状,该研究思路可能使老年人受益。该研究是 “把代谢、炎症和衰老直接联系在一起的结果”。澳大利亚墨尔本皇-家理工大学免

遗传发育所茉莉酸调控植物免疫机理研究取得进展

  由两个保卫细胞所组成的气孔是植物与外界环境进行水分和气体交换的重要通道,同时也是病原菌入侵植物的天然通道。遇到病原菌侵害时,植物会主动关闭气孔以阻止病原菌的入侵。为了打破植物的这种防御机制,病原菌产生冠菌素(COR),使气孔重新开张,以促进其顺利进入植物体内。一般认为,植物激素脱落酸(ABA)在

研究揭示植物抗虫机制

  已知动物和人在一生中免疫反应由盛到衰,这一现象被称为免疫衰老。一个有趣的问题是,植物的抗虫能力是否也会衰退呢?中科院上海植物生理生态研究所陈晓亚院士课题组在一项研究中发现了植物抗虫反应的这种时序性变化及调控机制。1月9日,相关研究成果在线发表于《自然—通讯》。  茉莉素是最重要的植物抗虫激素之一

遗传发育所在茉莉酸调控植物免疫机制研究中获进展

  以拟南芥为模式进行的研究表明,basic helix-loop-helix (bHLH) 类型的转录因子MYC2是茉莉酸信号转导途径的核心调控元件。在茉莉酸信号转导过程中,MYC2既作为转录激活因子正向调控早期受伤反应相关基因的表达,又作为转录抑制因子负向调控晚期抗病反应相关基因的表达,但对于M

病毒免疫逃逸机制诱导免疫细胞凋亡、衰老和耗竭

  病毒选择宿主的初衷是为了寄生,复制自己,所以它会进化以逃逸人体免疫系统,达到长久寄生以及在人际间传播的目的。   COVID-19病人临床资料,ICU重症病人,淋巴细胞计数远低于Non-ICU病人,提示病毒可能通过某些机制引起了淋巴细胞的减少。   恒瑞等启动了免疫检查点抑制

病毒免疫逃逸机制诱导免疫细胞凋亡、衰老和耗竭

前言 病毒选择宿主的初衷是为了寄生,复制自己,所以它会进化以逃逸人体免疫系统,达到长久寄生以及在人际间传播的目的。  COVID-19病人临床资料,ICU重症病人,淋巴细胞计数远低于Non-ICU病人,提示病毒可能通过某些机制引起了淋巴细胞的减少。  恒瑞等启动了免疫检查点抑制剂新冠肺炎的临床。众所

版纳植物园拟南芥WRKY57转录因子研究获进展

  植物叶片衰老受到多种发育因子和环境因子所调控。外源植物激素茉莉酸(JA)处理可以诱导叶片细胞迅速进入衰老程序,而生长素(Auxin)却可以有效地抑制该过程发生。众所周知,植物激素JA和auixn介导的信号途径之间存在着交叉调控通路,并在植物发育和抵抗病原菌侵染等生理过程中发挥着重要调控功能。但是

遗传发育所解析茉莉酸调控植物免疫的转录重编程机理

  茉莉酸是来源于不饱和脂肪酸的植物免疫激素,其生物合成途径和化学结构与高等动物中的免疫激素前列腺素有极高的类似性。在受到机械伤害、咀嚼式昆虫和死体营养型病原菌的侵害时,植物激活茉莉酸信号通路,启动并级联放大茉莉酸介导的转录重编程,从而产生有效的防御反应。但目前对茉莉酸激活植物免疫转录重编程的机理所

遗传发育所解析茉莉酸调控植物免疫的转录重编程机理

  茉莉酸是来源于不饱和脂肪酸的植物免疫激素,其生物合成途径和化学结构与高等动物中的免疫激素前列腺素有极高的类似性。在受到机械伤害、咀嚼式昆虫和死体营养型病原菌的侵害时,植物激活茉莉酸信号通路,启动并级联放大茉莉酸介导的转录重编程,从而产生有效的防御反应。但目前对茉莉酸激活植物免疫转录重编程的机理所

陈晓亚院士课题组发现植物抗虫调控新机制

   从发芽生长到开花结实,植物要面对不同种群、日益频繁的害虫侵袭,而过于活跃的防御反应大量消耗物质与能量,影响植物正常的生长发育。那么,植物在生长过程中是如何调节自己的抗虫反应呢?已知动物和人在一生中免疫反应由盛到衰,这一现象被称为免疫衰老。一个有趣的问题是,植物抗虫抗能力是否也会衰退呢?  中科

衰老如何破坏我们的免疫系统?

  最近,来自美国佛罗里达州大学斯克里普斯研究所(TSRI)的科学家阐明了“衰老如何削弱新的免疫细胞的产生,从而降低免疫系统对疫苗的反应,并将老年人置于感染的风险”。这项研究继续指出,饮食中的抗氧化剂,可减缓这种破坏性的过程。  相关研究结果发表在八月六日的《Cell Reports》,研究重点在一

这种日常维生素或能延缓衰老

美国奥古斯塔大学的一项新综述研究表明,每日服用2000国际单位(维生素的标准计量单位)维生素D有助于保护端粒。这对延缓衰老进程具有重要作用。近日,相关研究发表于《美国临床营养学杂志》。人类46条染色体末端均带有端粒,每次细胞复制时端粒都会缩短。当这些结构过短时,细胞停止分裂并最终死亡。端粒缩短与癌症

茉莉酸调控拟南芥生长素转运蛋白PIN2研究取得新进展

  茉莉酸作为一种与抗逆性密切相关的植物激素,主要调控植物对昆虫侵害、病原菌侵染和机械伤害的抗性反应,同时也参与调控根系生长、配子发育及成熟衰老等发育过程。生长素主要在植物的生长发育过程中起调控作用。以前的研究证明,茉莉酸通过调控生长素的生物合成和极性运输来调节拟南芥侧根的形成。生长素

Molecular-Plant:生物钟调控叶片衰老新机制

  生物钟是生物体为适应环境昼夜周期变化而进化出的协调细胞内基因表达、代谢网络调控的分子系统,调控植物的新陈代谢、生长发育等多个过程。生物钟使植物的内源节律与外部昼夜变化的光和温度等环境条件相协调,为植物的生长发育提供竞争性优势。叶片衰老过程能将营养和能量从衰老的叶片向正在发育的组织和器官转移,以便

找到原因!免疫细胞衰老,增加黄斑变性风险

  这一最新研究于4月5日发表在《JCI Insight》期刊,由来自于华盛顿大学医学院的科学家们完成。他们最新发现,巨噬细胞(macrophages)的衰老会增加眼睛炎症和异常血管生长,从而增加老年性黄斑变性的风险。免疫细胞衰老会加剧黄斑变性的发展。(图片来源:Danyel Cavazos/ Mi

人体免疫系统衰老变化趋势图绘出

  人们常说,年纪大了免疫力会下降。那么随着年龄的增长,人体内的免疫系统会发生哪些变化?北京协和医院感染内科医生李太生等历时10年完成的一项大规模健康人群免疫功能研究,在国际上首次绘出人体免疫系统衰老变化趋势图。相关论文发表在近日出版的衰老领域影响因子国际排名第一的《衰老》杂志上。   课题组按照世

首个免疫衰老多组学数据库设立

记者12月17日从中国科学院基因组所(国家生物信息中心)了解到,该所研究员张维绮团队、鲍一明团队与中国科学院动物研究所研究员刘光慧、曲静研究组合作,建立了免疫衰老领域首个多组学数据库Immunosenescence Inventory,旨在为整合和分析与免疫衰老相关数据提供一体化平台。随着全球人口老

我国学者发现Hippo通路成员MOB1调控茉莉酸及植物发育

  Hippo信号通路在调控动物细胞分裂、器官大小和肿瘤发生方面起重要作用,是当前动物和医学领域的研究热点,但是植物中相关研究还比较少。MOB1是该通路的核心成员,在酵母、动物和植物中高度保守。程佑发研究组前期发现拟南芥MOB1A在生长素介导的植物生长发育过程中起重要作用(Cui et al., 2

关于茉莉酸的基本介绍

  茉莉酸是存在于高等植物体内的内源生长调节物质。茉莉酸(3_氧_2_2′_顺_戊烯基_环戊烷_1_乙酸,jasmonic acid,简称JA)及其甲酯(简称JA_Me)是一类脂肪酸的衍生物。研究结果表明,JA对植物有许多相似生理作用。

茉莉酸的生理作用应用

是存在于高等植物体内的内源生长调节物质。茉莉酸(3_氧_2_2′_顺_戊烯基_环戊烷_1_乙酸,jasmonic acid,简称JA)及其甲酯(简称JA_Me)是一类脂肪酸的衍生物。研究结果表明,JA对植物有许多相似生理作用。更引人注目的是,茉莉酸类(JAs)、SA还与抵抗病原侵染有关,都是植物对外

首批柬埔寨茉莉香米运抵重庆

  1月18日,重庆检验检疫局发布消息称,首批12个货柜、重300吨、货值30余万美元的柬埔寨茉莉香米已通过中新互联互通南向铁海联运通道运抵重庆。  据悉,重庆2018年将通过南向通道进口5万吨柬埔寨茉莉香米。相比以往的江海联运模式,重庆通过南向通道以铁海联运进口东南亚地区货物,运输时间将节约20天

首次阐明了茉莉酸信号在青蒿素生物合成中的调控作用

   疟疾是由蚊虫叮咬所引起的全球范围内的传染性疾病。据WHO的最新统计,2016年有2.16亿人感染疟疾,死亡人数高达44.5万人。青蒿素及其衍生物是世界卫生组织 (WHO) 推荐的基于青蒿联合治疗 (ACT) 疟疾的最主要成分。我国学者屠呦呦教授因在青蒿中发现了青蒿素而荣获2015年的诺贝尔生理

中国科技大学Nature子刊揭示植物信号新机制

  来自中国科技大学大学的研究人员在新研究中证实,在拟南芥侧根发生过程中ERF109介导了茉莉酸和生长素生物合成之间的串扰。这一研究发现发表在12月19日的《自然通讯》(Nature Communications)杂志上。  论文的通讯作者是中国科技大学生命科学学院的向成斌(Cheng-Bin Xi

剪接复合体调控叶片衰老新机制获揭示

  叶片作为植物的光合作用器官,对能量和物质的需求极大,直接影响着植物的生长。叶片衰老作为叶片生长的最终阶段,标志着叶片贡献的减弱。这一过程不仅受到外界环境、植物激素和叶片年龄等因素的调控,还在物质回收和再利用中发挥重要作用。叶片衰老的精细调控对于农业产出,尤其是粮食作物的产量和质量有着深远影响。根

找到衰老免疫系统的“任督二脉”

胸腺是T细胞生产的动力之源,它能帮助我们抵抗体内感染。然而,随年龄增长,这个重要的器官也是首先功能性减弱的器官之一,导致T细胞的产生逐渐减少,最终增加了老年人感染和癌症的易感性。莫纳什生物医学发现研究所(BDI)的研究人员首次确定了影响胸腺细胞损失的因素及其背后的机制。他们的研究发表在《Cell R