Antpedia LOGO WIKI资讯

遗传发育所在植物染色体分离和取向研究中取得进展

染色体正确分离和精确的取向是保证生物体的发育、基因组的稳定及配子正确形成的前提。植物细胞有丝分裂在中期染色体形成双取向(bi-orientation),减数分裂I同源染色体配对形成二价体染色体的取向是单取向(mono-orientation),减数分裂II中期染色体形成类似有丝分裂的染色体取向。非常有趣的科学问题是,为什么减数分裂需要进行两次不同的染色体分离并形成不同的取向?是什么因子控制或决定这样的过程?在酵母和哺乳动物的研究中发现,激酶-磷酸化-保护蛋白(The Bub1-H2Aph-Sgo1)的通路及与纺锤体组装检测复合物(spindle assembly checkpoint (SAC) components)对姊妹染色体单体和染色体分离起着非常重要的作用,但在植物细胞分裂,特别是植物减数分裂过程中,对此了解非常少。 中国科学院遗传与发育生物学研究所韩方普研究组以玉米减数分裂突变体及玉米特殊的小染色体为载体研究组......阅读全文

基因技术专题-2

RNAi技术RNA干扰(RNA interference, RNAi)是近年来发现的研究生物体基因表达、调控与功能的一项崭新技术,它利用了由小干扰RNA(small interfering RNA, siRNA)引起的生物细胞内同源基因的特异性沉默(silencing)现象,其本质是siRNA与对应

狙击艾滋病毒――“引蛇出洞”还是“关门打狗”?

  曾庆平   有很多非专业或跨专业人士对于人类为何数十年攻克不了艾滋病难题感到迷惑不解,那是因为他们不太了解艾滋病毒致病的“特洛伊木马”机制。   艾滋病毒之所以能“摧毁”人类的免疫系统,是因为它们专门感染并杀死免疫细胞。不过,只要它们在免疫细胞内复制并产生新的病毒,人体都能立即识别它们并设法

减数分裂着丝粒配对研究取得新进展

  减数分裂是真核生物配子形成过程中一种特殊的细胞分裂方式,是生殖细胞产生的前提。同源染色体之间正确的识别、配对是减数分裂过程中染色体相互作用的开始,对于后续染色体的正确分离至关重要。目前,同源染色体相互精确识别并完成配对的过程和分子机理尚不十分清楚。  中国科学院遗传与发育生物学研究所韩方普研究组

流式细胞术在高等植物研究中的应用

流式细胞术(Flow cytometry,简称FCM)是20世纪70年代发展起来的一种对细胞的物理性质及化学性质,如细胞大小、内部结构、DNA、RNA、蛋白质、抗原等进行快速测定并可分类收集的技术。该技术超越了传统显微分析技术,能在瞬间对大量细胞进行准确的分析。这种快速有效的细胞分析技术已广泛应用于

中科院多项成果入选中国生命科学领域十大进展

  3月16日,中国科协生命科学学会联合体发布了2016年度“中国生命科学领域十大进展”。中国科学院相关单位独立或合作取得的5项科学进展入选,分别是:基于胆固醇代谢调控的肿瘤免疫治疗新方法、植物雌雄配子体识别的分子机制、精子tsRNAs可作为记忆载体介导获得性性状跨代遗传、MECP2转基因猴的类自闭

《科学》评出2012年十大突破

                      2012年,科学界充满着泪水。83岁的希格斯热泪盈眶,在他预言存在“上帝粒子”40多年之后,科学家们发现了它,这历史性的一天“能发生在我的有生之年,简直难以置信”。  与此同时,科学界也充满欢乐。“轮子!这是轮子!”“好奇”号火星车在红色星

重温下那些改变世界的诺奖女科学家

   或富裕,或贫寒,尽管出生的背景不同,但她们却同样摘得了科学领域的最高桂冠。  从1901年到2017年,女性共获得诺贝尔奖49次,获奖者48位。其中,有17人共18次获得诺贝尔奖科学领域的奖项——诺贝尔生理或医学奖12次、诺贝尔奖物理学奖两次、诺贝尔奖化学奖4次。  她们通过个人的贡献改变与影

Nature 表观遗传学进展将遗传学、环境与疾病联系了起来!

  21世纪,表观遗传学的研究得到了快速发展,同时其产生了让研究人员感兴趣和憧憬的东西,当然了,这其中也存在一些大肆宣传的成分,本文中,我们回顾了表观遗传学在过去几十年里是如何演变的,同时分析了近年来改变科学家们对生物学理解的一些研究进展;我们讨论了表观遗传学和DNA序列改变之间的相互作用,以及表观

植物组织培养知识概要

植物组织培养(Plant Tissue Culture):是指通过无菌操作分离植物体的一部分(外植体explant),接种到培养基上,在人工控制的条件下(包括营养、激素、温度、光照、湿度)进行培养,使其产生完整植株的过程。(主要有原生质体(Protoplast),悬浮细胞,组织(愈伤组织Callus

2018年12月Science期刊不得不看的亮点研究

  12月份Science期刊又有哪些亮点研究值得学习呢?小编对此进行了整理,与各位分享。  1. Science:CRISPRa加入肥胖之战,无需对基因组进行编辑就能对抗肥胖doi:10.1126/science.aau0629  在一项重要的新研究中,来自美国加州大学旧金山分校的研究人员证实CR

遗传发育所水稻减数分裂同源染色体分离机制研究取得进展

  与有丝分裂不同的是,减数分裂染色体复制一次,而细胞分裂两次。这种质的差异与染色体臂上及着丝粒处黏着蛋白的分步消失有直接关系。染色体臂上黏着蛋白在减数第一次分裂消失是保证同源染色体分离的前提;而着丝粒处黏着蛋白的维持是保证姊妹染色单体在减数第二次分裂才相互分开。shugoshin是一

国家重点基础研究发展计划09申报指南发布

  科技部基础研究司日前发布了《关于发布国家重点基础研究发展计划(含重大科学研究计划)2009年度项目申报指南的通知》。   国家重点基础研究发展计划是以国家重大需求为导向,对我国未来发展和科学技术进步具有战略性、前瞻性、全局性和带动性的基础研究发展计划,主要支持面向国家重大需求的基础研究领域和重

2012国家自然科学基金哪些干细胞项目资助金额最大

  国家自然科学基金委员会公布了2012年度面上项目、重点项目、重大国际(地区)合作研究项目、青年科学基金项目、地区科学基金项目、海外及港澳学者合作研究基金项目、科学仪器基础研究专款项目等方面的评审结果。有关评审结果将通知相关依托单位,其科研管理人员可登录科学基金网络信息系统(https:

2016年度中国科学十大进展发布!

  钴/氧化钴杂化二维超薄结构电催化还原CO2为液体燃料01  1、研制出将二氧化碳高效清洁转化为液体燃料的新型钴基电催化剂  将二氧化碳在常温常压下电还原为碳氢燃料,是一种潜在的替代化石原料的清洁能源策略,并有助于降低二氧化碳排放对气候造成的不利影响。实现二氧化碳电催化还原的关键瓶颈问题是将二氧化

2018前10月生物医学风云榜 袁隆平 曹雪涛及施一公等上榜

  经过特殊的算法,我们得到了2018年前10个月中国生物医学风云榜人物及最火爆的3个重大学术界事件,能够上榜的风云人物/事件,都曾长时间占据过100多个公生物医学公众号的头版头条。  在此,我们精选了其中的3个事件及16位风云榜人物。我们对其进行了划分,分别是:6星级的3个事件,分别位诺贝尔奖,国

遗传发育所在纺锤体组装研究中取得重要进展

  在细胞分裂过程中纺锤丝与着丝粒起初会以随机方式相连接,使得前中期存在许多错误的连接方式。比如一个着丝粒同时受到来自相反方向的纺锤丝牵引,这种现象被称作merotelic连接。如果这些错误的连接不被纠正,将会导致着丝粒间的拉力异常,引起染色体的不同步分离。因此,真核生物采用了一种监控机制来延迟染色

干细胞培养制造技术新进展

  干细胞是一种能够长期存活,且具有不断自我繁殖能力和多向化潜能,几乎存在于所有组织中的原始细胞。近年来随着科学家们研究的深入,干细胞在血液系统疾病、神经系统疾病、心血管疾病、自身免疫系统疾病以及内分泌疾病等各种疾病的治疗上让人们看到了希望。  干细胞技术是当今医学研究最前沿也是最热门的方向之一,近

南京大学田大成教授团队揭示遗传突变的重要分子机制

  南京大学生命科学学院田大成教授所领衔的国际团队,利用拟南芥、水稻等自花传粉植物,构建了来自相同遗传背景的、经历一次减数分裂的纯合体、杂合体(F1)及其分离世代(F2到F4),进而测序检测遗传突变的发生。该成果《Parent-progeny sequencing indicates higher

作物育性理论研究“973”项目获系列创新成果

  作物育性是作物“传宗接代”的能力,也是产生人类赖以生存的粮食的基础。过去几十年来,以作物育性为基础的杂交育种为农作物产量的提高作出了巨大的贡献。但是,进一步提高育种水平,确保我国粮食生产的长治久安,仍有赖于对作物育性形成分子机制的深入研究。  在国家重点基础研究计划(“973”计划)的

遗传发育所在植物着丝粒形成及其表观遗传学研究中获进展

  植物着丝粒含有大量的重复序列和反转座子,结构复杂并受表观遗传学调控。中国科学院遗传与发育生物学研究所韩方普研究组长期从事植物着丝粒的表观遗传学研究,曾在植物中首次发现着丝粒的失活现象并初步分析失活着丝粒的调控机制可能与DNA甲基化状态相关。由于着丝粒的特殊表观遗传学调控机制,植物着丝粒的DNA序

如何治疗不孕不育?

  不孕不育是现代社会年轻夫妇经常会遇到的问题。引发不孕不育的原因有很多,其中既包括遗传性的因素,也包括环境因素。生活习惯的改变也会导致不孕不育的发生。为了解决这一问题,研究者们也进行了大量的工作。针对近期不孕不育相关领域的研究进展,进行简要盘点,希望读者朋友们能够喜欢。  1. Science:新

卵子发生和受精机制研究方面研究取得系列进展

  在雌性哺乳动物和人类中,雌性生殖细胞在胎儿期就进入减数分裂,并阻滞在第一次减数分裂前期,外包一层起源于卵巢体细胞的颗粒细胞,共同形成原始卵泡。在雌性动物繁殖过程中,一部分原始卵泡逐渐激活、长大和成熟,最终排卵和受精。在人类,卵母细胞停滞在第一次减数分裂前期可长达十几年到几十年,一个月经周期一般有

多倍体多面手 探索额外染色体组真面目渐成气候

  多倍体将会有很多用途,我们现在知道的只是皮毛。 一个有着正常数量两倍染色体的人体细胞试图分裂。   细胞分裂通常会遵循一个简单的规则。在复制DNA后,细胞分裂,产生两个子细胞。几年前,当时在美国波特兰俄勒冈健康与科学大学读博士后的Andrew Duncan拍下了小鼠肝细胞分裂的

遗传学家、生物统计学家李景均先生其人其书及其精神

今年是遗传学家、生物统计学家李景均先生著作的英文版《群体遗传学导论》一书出版70周年。该书是中国现代史上迄今为止极少数在中国出版但在西方某个科技领域产生重大影响的专业书。绝大多数新中国成立后出生的人可能都不知道李景均是谁。在美留学的大陆学生,除非所学专业和人类遗传学有关,恐怕大多数也不知道李景均是谁

遗传发育所减数分裂同源染色体重组机制研究获新进展

  减数分裂过程中同源染色体重组不仅是遗传多样性形成所必需的,而且重组形成的交叉,也是同源染色体分别受两极纺锤丝牵引稳定排列在赤道板上,最终正确分离所必需的。研究表明,两个不同途径导致两种不同类型交叉的形成,一是对干涉敏感的交叉,也称I型交叉;另一是对干涉不敏感的交叉,也称II型交叉。

研究揭示人类生育力新进展

  本文中,小编整理了多篇重要研究成果,共同解读科学家们在人类生育力研究上取得的新进展,分享给大家!  图片来源:blacklistednews.com  【1】Nature子刊:高龄生育风险不容忽视,孕妇男性后代心血管疾病风险升高!  doi:10.1038/s41598-019-53199-x 

自私基因打破百年孟德尔分离定律

  最近,北卡罗来纳大学教堂山分校(UNC)的医学研究人员发现,一个叫做R2d2的基因——减数分裂驱动(meiotic drive)2的响应基因,打破了一百多年以来的孟德尔“分离定律”,该定律认为,后代继承双亲每个基因两个拷贝其中一个的概率是相等的。  多年来,科学家们有证据表明,在哺乳动物中这一定

明年973计划启动184个项目 预算经费近30亿

  12月3日,中国科学技术部在其官方网站上发布“关于国家重点基础研究发展计划(973计划)项目预算安排初步方案的公示”称,2013年973计划启动的184个项目,专项经费预算为29.9313亿元人民币。   这184个项目涵盖粮食生产、作物多样性、遗传与基因、天气变

4月12日《自然》杂志精选

铜和铂催化剂的最新进展  均相铜和铂催化剂被用来合成包括药物、商业化学品及聚合物在内的一系列有机分子。在这些催化剂的活性、选择性和范围方面所实现的改进,有可能提高它们的用途,减少化学反应的环境影响。在这篇Review文章中,Amanda Hickman 和 Melanie Sanfo

178个973计划(含重大科学研究计划)项目将结题验收

  近日,科技部网站发布《科技部基础研究司关于2015年973计划(含重大科学研究计划)项目结题验收工作安排的通知》,通知中提到,178个973计划(含重大科学研究计划)项目将于今年8月底实施期满,进行结题验收。通知全文如下:科技部基础研究司关于2015年973计划(含重大科学研究计划)项目结题验收