哥大闵玮组:新型显微术突破传统光学成像的颜色极限
生命科学研究水平的发展很大程度上要归功于新型研究手段和生物技术的创新。其中,光学成像技术贯穿了生命科学研究的历史与未来。上至17世纪列文虎克利用显微镜开创了微生物学,下到如今已经广泛应用的荧光共聚焦显微镜,这个领域的每一次技术突破都极大地增强了人们认识微观世界的能力。近年来,光学显微镜技术在不断地突破自身的局限。例如2000年以来兴起的超分辨荧光成像技术,已经突破了光学衍射极限。时至今日,人类进入大数据和系统生物学时代,另一个日益显著的挑战摆在眼前:在复杂的生物系统中,如何对多种组分进行无损,快速,高灵敏度的同时成像?传统的荧光成像方法中,由于其探针发射光谱有较宽的宽度(~50nm),可见光波长区最多可以容纳5种颜色。正因为此,最多5种生物组分能被同时成像。要想在复杂体系里根本性地突破这个“颜色极限”,需要寻求全新的光谱学手段以及发展相应的特异性探针系列。 美国哥伦比亚大学化学系闵玮教授的团队近日报道了一种全新的成像技术:......阅读全文
哥大闵玮组:新型显微术突破传统光学成像的颜色极限
生命科学研究水平的发展很大程度上要归功于新型研究手段和生物技术的创新。其中,光学成像技术贯穿了生命科学研究的历史与未来。上至17世纪列文虎克利用显微镜开创了微生物学,下到如今已经广泛应用的荧光共聚焦显微镜,这个领域的每一次技术突破都极大地增强了人们认识微观世界的能力。近年来,光学显微镜技术在不断
“闪耀”Nature-拉曼显微术突破传统光学成像颜色极限
近年来,显微镜技术在不断地突破自身的局限。来自美国哥伦比亚大学的研究人员报道了一种全新的成像技术:电子预共振受激拉曼散射显微镜(Electronic Pre-Resonance Stimulated Raman Scattering Microscopy)。这一技术结合了拉曼散射光谱窄(
新型显微技术突破快速3D成像极限
美国加州大学圣克鲁斯分校团队开发出一种新型显微技术,突破了快速3D成像的极限。他们利用25台相机组成高速显微镜,能一次性捕捉整个小型生物体内部的实时细胞动态过程。该技术为发育生物学、神经科学和运动研究等领域提供了前所未有的观察手段,将推动生物医学研究向更高维度和智能化方向发展。相关成果发表于最新
光学显微镜的极限
光学显微镜的极限要了解电子显微镜,我们还得从光学显微镜说起。在生活中,当我们需要放大观察一些小东西时,首先想到的就是放大镜,即光学凸透镜。凸透镜利用光线通过透镜时发生的折射使其聚焦,从而达到放大被观察对象的目的。常用的现代光学显微镜则是多个光学透镜的组合,其中起放大作用的目镜和物镜就是凸透镜。在我的
什么是光学显微术?
中文名称光学显微术英文名称optical microscopy定 义用光作照明工具的显微术。应用学科机械工程(一级学科),光学仪器(二级学科),显微镜-显微镜一般名词(三级学科)
光学显微术的技术特点
中文名称光学显微术英文名称optical microscopy定 义用光作照明工具的显微术。应用学科机械工程(一级学科),光学仪器(二级学科),显微镜-显微镜一般名词(三级学科)
光学显微镜成像光路系统的调整及显微镜检术概要
成像光路系统的调整及显微镜检术概要显微镜成像光路系统的调整,是根据不同显微镜检术的需要而进行的。所谓显微镜检术(microscopy),概括而言就是以显微镜观察样品时所使用的照明方法,以及如何使样品所成的像能获得更良好反差的技术与方法。以下简述显微镜检术中已成熟的几种方法及对应的显微镜成像光路系统的
光学显微镜成像原理
学生用的显微镜是反像,上下左右与实际物体正好相反。物镜放大率乘以目镜放大率就是总放大倍数。
光学显微镜成像原理
显微镜是由一个透镜或几个透镜的组合构成的一种光学仪器,是人类进入原子时代的标志。主要用于放大微小物体成为人的肉眼所能看到的仪器。光学显微镜成像原理: 光学显微镜主要由目镜、物镜、载物台和反光镜组成。目镜和物镜都是凸透镜,焦距不同。物镜的凸透镜焦距小于目镜的凸透镜的焦距。物镜相当于投影
关于光学显微镜成像光路系统的调整及显微镜检术概要
显微镜成像光路系统的调整,是根据不同显微镜检术的需要而进行的。所谓显微镜检术(microscopy),概括而言就是以显微镜观察样品时所使用的照明方法,以及如何使样品所成的像能获得更良好反差的技术与方法。以下简述显微镜检术中已成熟的几种方法及对应的显微镜成像光路系统的调整方法。 1.透射光明视野
新型显微镜填补光学和电子显微镜间的成像空白
据R&D Magzine 网站2007年7月报道,一种重要的新型显微镜填补了光学和电子显微镜之间的成像空白。光学显微镜很容易操作,但是其有效放大率却通常限定在了1000倍以内。电子显微镜常用放大倍率为100,000倍,但是却更难操作。我们通常将这种新型显微镜称之为桌面或者长椅电子扫描显微镜。
光学显微镜的成像原理
基本原理在光学显微镜下无法看清小于0.2µm的细微结构,这些结构称为亚显微结构(submicroscopic structures)或超微结构(ultramicroscopic structures;ultrastructures)。要想看清这些结构,就必须选择波长更短的光源,以提高显微镜的分辨率。
光学显微镜的成像原理
光学显微镜的原理光学显微镜主要由目镜、物镜、载物台和反光镜组成。目镜和物镜都是凸透镜,焦距不同。物镜的凸透镜焦距小于目镜的凸透镜的焦距。物镜相当于投影仪的镜头,物体通过物镜成倒立、放大的实像。目镜相当于普通的放大镜,该实像又通过目镜成正立、放大的虚像。经显微镜到人眼的物体都成倒立放大的虚像。反光镜用
光学显微镜的成像原理
光学显微镜的成像研究和设计,是以人眼可见光光线(人们常说的:可见光)的物理现象为基础进行的。光学显微镜的分辨力受可见光波长的限制,质量较好的光学显微镜的分辨极限约为0.2μm。小于光波波长的物体因衍射而不能成像。为了观察到更细微的物体和结构,科学家采用更短波长的电子射线来代替光波,设计出了电子显微镜
光学显微镜的分辨率极限有多大
天纵检测(SKYLABS)在之前的《我们是否可使用光学显微镜观测到原子了?》文章中其实谈到了我们是无法使用光学显微镜观察到原子级别的物体的。今天在本期中,再给您介绍一下光学显微镜的分辨率极限到底是多少?其实光学显微镜的分辨率极限问题在1873年就被德国物理学家阿贝所解答了。阿贝通过计算推导发现了光学
显微镜光学构件及成像原理
(一) 折射和折射率 光线在均匀的各向同性介质中,两点之间以直线传播,当通过不同密度介质的透明物体时,则发生折射现象,这是由于光在不同介质的传播速度不同造成的。当与透明物面不垂直的光线由空气射入透明物体(如玻璃)时,光线在其介面改变了方向,并和法线构成折射角。 (二) 透镜的性
光学显微镜成像原理是什么
光学显微镜成像原理是凸透镜成像原理,显微镜有两组镜头,物镜成倒立放大的实像,目镜则将物镜成的像再次成像,只不过成的是放大的虚像,因此经过两次成像后,显微镜下看到的物像是倒立放大的虚像。显微镜下要获得清晰的物像,必需严格按照操作规程进行操作,先降低镜筒,用粗准焦螺旋反方向缓慢上升镜筒的过程中注视目镜,
近场光学显微镜的背景
传统光学显微镜(即远场光学显微镜)是显微镜家族中年代最久远的成员,它曾是观测微小结构的唯一手段。传统光学显微镜由光学透镜组成,利用折射率变化和透镜的曲率变化,将被观察的物体放大,来获得其细节信息。然而,光的衍射极限限制了光学显微镜分辨力的进一步提高。由瑞利分辨力极限可知,光学显微镜的放大倍数是不能任
能同时透射和反射相同颜色的新型光学涂层诞生
光学涂层技术是成像、光伏等应用的关键之一。美国罗彻斯特大学和凯斯西储大学的研究人员设计了一种新型光学涂层技术,使用“法诺共振光学涂层”(FROC),可以将反射和透射光控制在非常窄的波长范围。团队实现的 FROC 薄膜纳米腔厚度仅有 300nm 左右,比传统的多层介电镜等更薄,且对角度的依赖性
西安光机所计算光学显微成像研究获进展
使用光学显微镜进行病理切片检查是癌症诊断的“金标准”。传统的数字病理学常使用高倍物镜和扫描拼接的方法以获得大视场、高分辨率图像,但高精密电动位移台、高倍物镜、脉冲光源等组件价格昂贵,提高了仪器设备的成本,且大量的机械运动也会减缓成像的时间效率。同时,高倍物镜带来的景深狭小和机械扫描拼接带来的伪影
西安光机所智能光学显微成像研究取得进展
近日,中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室姚保利课题组在智能光学显微成像研究方面取得新进展。相关研究成果以Dual-wavelength in-line digital holography with untrained deep neural networks为题,在线
西安光机所智能光学显微成像研究取得进展
近日,中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室姚保利课题组在智能光学显微成像研究方面取得新进展。相关研究成果以Dual-wavelength in-line digital holography with untrained deep neural networks为题,
金相显微镜光学放大成像系统
金相显微镜是研究金属显微组织zui常见zui更要的工具。从19世纪中叶开始应用光学微微镜以来,丛微镜的构造、类型、应用范围和性能等人面均有了很大的进步。金相显微镜的种类和形式很多,主要有直立式、倒立式和卧式三大类。金相显微镜宁要由)L学放大系统、照明系统相机械系统i部分组成.有的显微镜还附有摄影装置
金相显微镜光学放大成像系统
金相显微镜--光学放大成像系统金相显微镜是研究金属显微组织最常见最更要的工具。从19世纪中叶开始应用光学微微镜以来,丛微镜的构造、类型、应用范围和性能等人面均有了很大的进步。金相显微镜的种类和形式很多,主要有直立式、倒立式和卧式三大类。金相显微镜宁要由)L学放大系统、照明系统相机械系统i部分组成.有
西安光机所计算光学显微成像研究获进展
使用光学显微镜进行病理切片检查是癌症诊断的“金标准”。传统的数字病理学常使用高倍物镜和扫描拼接的方法以获得大视场、高分辨率图像,但高精密电动位移台、高倍物镜、脉冲光源等组件价格昂贵,提高了仪器设备的成本,且大量的机械运动也会减缓成像的时间效率。同时,高倍物镜带来的景深狭小和机械扫描拼接带来的伪影
光学显微镜理论上的极限放大倍数是多少?
光学显微镜的分辨极限大约是0.2微米,相当于放大倍数1500~2000倍;要想实现更大的放大倍数,就得使用电子显微镜或者隧道扫描显微镜。放大镜可以使光线重新聚焦,从而实现放大效果,使用放大镜的组合可以得到光学显微镜;光学显微镜的极限受波长限制,不可能无限放大。一般地,固定波长的光学显微镜分辨极限,是
突破衍射极限,还看“近场光学”!
原文地址:http://news.sciencenet.cn/htmlnews/2023/4/499626.shtm
中科院团队实现光学超分辨成像精度破极限达4.1纳米
中国科大郭光灿院士领导的中科院量子信息重点实验室孙方稳研究组,利用光学超分辨成像技术实现了对单个自旋态的纳米量级空间分辨率测量和操控,其成像精度达到4.1纳米。研究成果1月2日发表在《自然》子刊《光:科学与应用》上。 了解微纳尺度物体的物理属性及动力学过程,需要纳米尺寸的探测器,纳米尺度的固态
AFM光学测量
光学测量突破光学衍射极限实现纳米级的光学成像与探测,一直是光学技术发展的前沿。2014 年诺贝尔化学奖授予了突破光学衍射极限的超分辨光学显微成像技术,包括受激发射损耗显微术、光敏定位显微术、随机光学重建显微术、饱和结构照明显微技术等。将AFM与光学技术结合起来,可以研究微纳米尺度下的光学现象和进行光
金相光学显微镜成像的原理是什么?
金相光学显微镜是金属材料试验研究的重要手段之一,主要由光学系统、照明系统、机械系统等组成。其是利用可见光作为照明源,通过玻璃透镜对试样进行放大成像的。成像时来自照明系统的光束经金相试样表面反射后,经过物镜和目镜等一套光学放大系统使试样表面的显微组织放大,并在目镜筒内成像,以供操作人员进行相关观察。