化学所在离子调控冰晶重结晶研究中取得系列进展

结冰是自然界中常见的相变过程。近地面的冰晶能够为诸多化学反应提供必要的反应界面与反应载体,进而深刻影响地表环境变化与地质结构变迁。结冰同时也是生命、大气、海洋、环境和航天航空等领域重要的科学问题,长期以来受到科学家的高度重视。 在国家自然科学基金委、科技部和中国科学院的支持下,中国科学院化学研究所绿色印刷重点实验室研究员王健君课题组科研人员近年来在冰成核、冰生长和抑制重结晶方面开展了深入系统的研究。他们发现了冰异相成核的离子效应(Sci. adv., 2016, 2, e1600345);揭示了抗冻蛋白调控冰核形成的Janus机制(PNAS, 2016, 113, 14739-14744.);发现了氧化石墨烯能控制冰晶生长和重结晶,并首次将氧化石墨烯应用于低温细胞保存(Angew. Chem. Int. Ed., 2017, 56, 997 –1001.)。 冰重结晶是一种奥斯瓦尔德熟化现象(冰晶演化过程中,因为大冰晶的......阅读全文

化学所揭示物体的可变漂浮状态调控规律

  物体漂浮在水面是生活中的常见现象。控制物体的漂浮状态在船只设计、矿物筛选、胶体组装和微纳制造等领域具有应用价值。已有研究揭示材料表面性质对漂浮状态的作用。而当前研究认为物体稳定漂浮时的状态和浮力是固定不变的。  近年来,中国科学院化学研究所绿色印刷院重点实验室宋延林课题组围绕固体与液体粘附作用与

化学所在离子调控冰晶重结晶研究中取得系列进展

  结冰是自然界中常见的相变过程。近地面的冰晶能够为诸多化学反应提供必要的反应界面与反应载体,进而深刻影响地表环境变化与地质结构变迁。结冰同时也是生命、大气、海洋、环境和航天航空等领域重要的科学问题,长期以来受到科学家的高度重视。  在国家自然科学基金委、科技部和中国科学院的支持下,中国科学院化学研

中科院化学所揭示物体的可变漂浮状态调控规律

原文地址:http://news.sciencenet.cn/htmlnews/2022/4/476800.shtm 物体漂浮在水面是生活中的常见现象。控制物体的漂浮状态在船只设计、矿物筛选、胶体组装和微纳制造等众多领域具有重要的应用。近年来,研究者逐渐揭示了材料表面性质对漂浮状态的作用。然而,

近代物理所电场调控纳米孔道离子传输特性研究获进展

  纳米通道中的离子输运特性与机理是研究细胞离子通道、离子整流与纳滤过滤的基础。纳米孔道结构与表面修饰对离子输运调控的研究工作已有诸多报道,但关于电场对于纳米孔道表面与离子输运的影响尚不清楚。  中国科学院近代物理研究所科研人员利用HIRFL高能微束装置的单离子辐照技术和径迹蚀刻法制备的PET单纳米

化学所绿色溶剂中分子聚集与功能调控研究取得新进展

  超临界CO2和离子液体是具有许多特性的绿色溶剂。在国家自然科学基金委、科技部和中国科学院的大力支持下,化学研究所胶体、界面与化学热力学院重点实验室的研究人员在绿色溶剂中分子聚集与功能调控研究方面取得新进展。  传统乳液一般由有机溶剂(油)、水和表面活性剂所形成。由于有机溶剂一般具

化学所利用分子间弱相互作用调控生物传感研究获进展

  弱键相互作用分子间是自然界实现化学选择性的基础。设计和调控分子间弱相互作用将为基于生物传感的活体分析化学研究提供新的思路。  中国科学院化学研究所活体分析化学院重点实验室研究员毛兰群课题组长期致力于利用调控分子间弱相互作用,发展活体分析化学新原理和新方法的研究。利用氨基酸分子间的离子对相互作用,

中科院化学所锂离子电池电极材料研究获进展

近日,中科院化学所分子纳米结构与纳米技术院重点实验室的研究人员设计并构筑出了可方便形成三维导电网络的同轴“纳米电缆”结构高性能复合电极材料,可有效解决电极材料不能同时高效传导锂离子与电子的问题。  为适应消费电子、电动汽车和储能领域的发展,需要开发更高能量密度、功率密度、循环次数和安

离子细胞化学实验——钙离子细胞化学具体方法

离子细胞化学可用来显示细胞内离子定位分布,目前用得比较多的是显示细胞内钙的分布,通常需结合EDX能谱分析。细胞内钙离子分布是高度隔室化的,形成钙离子浓度不同的钙池,正常情况下,细胞内胞浆、线粒体、核等部位都有钙的分布;在大多病理情况下(如缺血、缺氧、中毒等),细胞内钙可升高,并且进入到细胞内的钙很多

离子细胞化学实验

实验方法原理 实验材料 组织试剂、试剂盒 磷酸钾戊二醛蔗糖焦锑酸钾锇酸实验步骤 1. 组织切成约 1 mm3 的小块,用 0.09 mol/L 磷酸钾(或草酸钾)-3% 戊二醛(pH 7.3,用 0.1%~1% KOH 调 pH)固定 4 h 以上,4℃。也有人推荐固定早期用微波照射,以加速

化学所通过分子能级的精准调控实现有机光伏效率新突破

  聚合物太阳能电池作为新兴的前沿研究领域,其能量转化效率的不断攀升主要得益于光活性层材料(包括电子给体与电子受体材料)的设计和开发。其中,通过分子结构的理性设计来调制材料的前线轨道能级是一种十分有效的提高器件开路电压的策略。近年,在中国科学院、国家自然科学基金委、北京市科委和中国科学院化学研究所的

化学所制备光子晶体微芯片实现多种金属离子的识别与检测

  光子晶体材料因其对光子传播的调控性能而被称为“光半导体”,其研究和应用受到广泛关注。在国家自然科学基金委、科技部和中国科学院的支持下,中科院化学研究所绿色印刷院重点实验室的科研人员针对光子晶体的制备和应用开展了系统研究 (Acc. Chem. Res. 2011, 44, 405-415;

Cell:离子通道的“阴阳调控系统”

  来自约翰霍普金斯大学的研究人员报道称,发现一种常见蛋白质在控制离子通道的开关上起着与以往认为的完全不同的作用。  钠离子通道和钙离子通道是细胞上非常关键的门户,允许钠离子和钙离子进入细胞。许多重要的生命过程都依赖于正确的钠离子和钙离子浓度,例如健康大脑中的信息交流和心脏收缩。以及许多其他的过程。

物理所离子液体调控WO3相变及神经形态器件研究取得进展

  离子液体调控因为强大的电荷调控能力吸引了研究人员的广泛关注,可以用来实现许多新颖物理现象的人工调制,比如金属-绝缘体相变、磁性相变、超导转变等。随着研究的不断深入,人们逐渐发现在离子液体门电压作用下,除了净电荷的作用外,尤其在氧化物里常常伴随着复杂的离子插入/脱出过程。  中国科学院物理研究所/

化学所李峻柏课题组短肽晶体对称性调控研究获进展

  超分子自组装是生命结构形成的基础。探索生物分子组装过程以及精准调控组装过程,有助于揭示生命活动的分子机制和指导生物材料的合成。  中国科学院化学研究所胶体、界面与化学热力学院重点实验室李峻柏课题组在短肽分子的组装机理以及结构和功能调控等方面取得了系列进展(Chem. Soc. Rev., 202

植物所揭示植物免疫反应调控新途径

  为成功侵染植物,病原菌往往通过向植物细胞内注射效应蛋白,抑制宿主的免疫反应。而植物的NOD类受体(NLRs)可特异识别效应蛋白,并激发效应子触发的免疫反应(ETI)。但在无病原菌侵染时持续激活免疫反应对植物的正常生长发育是不利的。SUMO化修饰是一种蛋白质翻译后修饰,影响蛋白质活性、稳定性、相互

调控钠占位方式提高P2型钠离子电池正极材料电化学性能

  周永宁课题组:   全文速览  钠离子电池P2型层状正极材料在充放电过程中,不仅受晶体结构变化控制,还受到Na/空位超结构影响。本文通过高价态离子掺杂,实现Nae和Naf占位比例的调控,从而控制Na/空位结构,提高了P2型正极材料的电化学性能。通过基于同步辐射光源的多种先进表征手段,揭示了材料结

自由基调控离子通道的研究

氧自由基(FORs)是生物体生命活动过程中产生的物质,在动物体中引起许多重要的生物化学及生理学现象。FORs作用于离子通道及受体复合物引发信号级联反应对细胞内代谢活动进行调控。研究发现,伴随着植物生长、激素活动及胁迫应激等不同生命过程,FORs形成并逐渐累积,同时累积的还有胞内钙离子。因此,研究人员

蚊子幼虫适应环境的离子调控机制

蚊子是许多哺乳动物病原的宿主,包括寄生虫、细菌、病毒和真菌。疟疾主要是通过按蚊传播的疾病。为了控制疾病,了解传播的过程非常重要,因此需要研究蚊子幼虫的环境适应性。蚊子幼虫能够适应多变环境是因为蚊子的直肠有一个高度发育的离子调控系统。直肠负责吸收离子和营养,排出过量的盐和废弃物。但是这种调节的过程一直

化学所等用离子液体水凝胶一步合成负载型纳米催化材料

  离子液体是一种绿色功能介质,具有不挥发、性质稳定、熔点低、液态温度宽、溶解能力强、功能可设计等优点,在化学反应、材料科学、萃取分离等领域有广阔的应用前景。离子液体性质和应用研究具有重要的意义。   在国家自然科学基金委、科技部和中国科学院的大力支持下,中国科学院化学研究所胶体、界面与化学热力学

硫离子的化学式

硫离子的化学式S2-硫只可能得到2个电子,形成带两个单位负电荷的硫离子。所以使硫离子变为硫原子需失2个电子。正四价的硫和正六价的硫一般形成共价键,不会出现离子。硫的化学价比较多-2(H2S)+6(H2SO4)+4(H2SO3、SO2)如果是-2的S,那么就要得到2个电子如果是+6的S,那么就要失去6

动物所揭示肠道组织稳态调控的重要机制

  成体组织的稳态是由成体干细胞及其子代分化细胞来维持的。最好的例子就是成体的胃肠道组织:由于胃肠道组织不断受到食物摩擦、病原菌侵染等外部因素的干扰,造成胃肠道上皮细胞的不断丢失,这些丢失的细胞必需被及时补充以维持胃肠道上皮组织的稳态。成体干细胞的维持和分化必须受到严格的调控。干细胞的过早分化会导致

青岛能源所揭示木材形成的双重调控机制

  木材是多年生木本植物的主要储能组织,不仅为人类提供多样化的木材产品,而且是陆地上最大的碳库,具有重要的生态意义。相对于粮食作物,木本植物特别是木材形成机制尚不清楚,这极大地限制了林木分子育种研究的进展。中国科学院青岛生物能源与过程研究所研究员周功克带领的资源植物与环境工程研究组前期系统研究了木本

遗传发育所揭示植物细胞膨压调控机制

  膨压普遍存在于植物细胞,与生长发育密切相关,但对其调控的分子机制了解非常有限。中国科学院遗传与发育生物学研究所杨维才研究组通过对植物花粉管进行研究,发现了一个影响花粉管体内生长的突变体turgor regulation defect 1 (tod1),其花粉管内钙离子浓度下降,在花柱内生长缓慢,

水生所揭示细菌RNA代谢调控新机制

  近日,中国科学院水生生物研究所张承才团队关于细菌中RNA代谢调控机制的研究取得了进展。相关研究成果以《蓝藻中RNase E受一个保守蛋白调控》(A conserved protein inhibitor brings under check the activity of RNase E in

遗传发育所揭示水稻穗茎发育调控机制

  杂交水稻的发明和大规模应用不仅解决了中国人的吃饭问题,对世界减少饥饿也作出了卓越的贡献。杂交水稻的制种过程需要两个亲本材料——雄性不育系和恢复系,然而水稻不育系常常具有“包穗”(即抽穗期穗子被包裹在叶鞘内难以抽出)的特性,为杂交稻制种带来很大困难。研究表明最上部茎节内活性赤霉素水平的降低是导致不

神经所研究发现调控大脑发育的新机理

  《细胞》(Cell)杂志于6月22日发表了中科院上海生命科学研究院神经所张旭研究组题为“成纤维细胞生长因子13作为微管稳定蛋白调控神经元极性化与迁移”的研究论文。论文报道了非分泌型成纤维细胞生长因子13(Fibroblast growth factor 13;FGF13)在神经元

植物所揭示果实成熟的转录后调控机制

  成熟是果实发育的重要阶段,伴随着颜色、香气及硬度等一系列变化。这一过程受到内外因素的共同调控,机制非常复杂。对果实成熟调控的有关机制开展研究,对于提高果实品质、优化贮藏保鲜技术具有很大的指导意义。近年来,有关果实成熟的转录调控已有较多报道,鉴定到多个重要的转录因子,对它们的作用机制也进行了较多研

动物所揭示小胶质细胞发育的调控机制

  小胶质细胞是脑中固有的免疫细胞,是脑中重要的免疫防线,保护大脑免受病毒细菌的入侵和破坏。小胶质细胞也在大脑的损伤、炎症和神经退行性疾病方面扮演着重要角色。小胶质细胞除了在成年生理病理条件下发挥作用外,还在脑发育的整个阶段都发挥着重要作用。小胶质细胞的这些重要作用与其在胚胎大脑皮层中特定的时空分布

植物所揭示植物暗形态建成的调控机制

  植物根据黑暗或光照环境的差异采取截然不同的生长模式。在黑暗中,植物幼苗快速长高(暗形态建成),这种方式便于穿透土壤,并见光进行光合自养生长;而在光下,幼苗的纵向生长速度明显减慢(光形态建成),有利于减少能量消耗并保持茎干粗壮。植物的这种生长方式由光信号转导通路调控,但其调节机制仍不十分清楚。  

化学所在RNA表观遗传修饰的化学调控研究方面取得进展

  RNA的表观遗传修饰是RNA调节基因表达的化学基础,利用新反应技术和新分子工具对RNA修饰进行精准调控对揭示RNA介导的遗传信息表达网络具有重要意义。然而由于RNA本身的不稳定性,使得在活细胞水平进行化学调控变得异常艰难。N6-甲基腺嘌呤(m6A)是真核生物最常见和最丰富的一种修饰,占甲基化修饰