高能量密度纳米固态金属锂电池研发获系列进展
化学所高能量密度纳米固态金属锂电池及其关键材料研发获系列进展 为开发高能量密度的纳米固态金属锂电池,解决金属锂电池面临的循环性与安全性难题,在科技部、国家自然科学基金委和中国科学院的大力支持下,中科院化学研究所分子纳米结构与纳米技术院重点实验室研究员郭玉国课题组在金属锂负极、固体电解质及固态电池研究方面取得系列进展。 近年来,该课题组研究人员长期致力于金属锂负极的相关研究。前期的研究工作中,针对充放电过程中金属锂负极的不均匀溶解和沉积(即枝晶)问题,他们提出利用三维纳米集流体来引导金属锂在三维电极内部的均匀沉积与溶解的思路,成功实现了金属锂枝晶的控制(Nat. Commun., 2015, 6, 8058)。研究人员提出并开发了一种原位处理技术,成功在金属锂表面形成具有高杨氏模量、快速锂离子输运能力的磷酸锂固体电解质界面膜,有效减少了金属锂与电解液的副反应,抑制了锂枝晶的生长(Adv. Mater., 2016, 28,......阅读全文
高能量密度纳米固态金属锂电池研发获系列进展
化学所高能量密度纳米固态金属锂电池及其关键材料研发获系列进展 为开发高能量密度的纳米固态金属锂电池,解决金属锂电池面临的循环性与安全性难题,在科技部、国家自然科学基金委和中国科学院的大力支持下,中科院化学研究所分子纳米结构与纳米技术院重点实验室研究员郭玉国课题组在金属锂负极、固体电解质及固态电
具有超高能量密度的纳米磷酸盐锂电池
A123的高效能纳米磷酸盐8482;锂电池,拥有大功率和高能量密度传输能力,安全性能高,电池寿命长,比其他同类电池轻,包装更加紧密。随着时间的推移,纳米磷酸盐8482;锂电池的自放电量始终保持在很小值。 俄亥俄州子弹头电动流线型火车使用A123系统的蓄电池,创下了每小时307.66英里的世
高能量密度锂电池成为研究热点
高能量密度是储能器件未来的重要发展方向,锂离子电池作为性能优异的储能器件在过去几十年被广泛使用。然而,目前传统锂离子电池正极材料的能量密度已经逼近理论值,如何进一步提升能量密度成为研究热点。 全固态金属锂电池作为下一代高能量密度主流技术方案受到广泛关注。理论上电池器件的能量密度在材料层面由其理
高能量密度无负极锂金属电池研究取得进展
原文地址:http://www.cas.cn/syky/202103/t20210324_4782106.shtml 目前,基于锂离子插层化学的传统锂离子电池已无法满足各种新兴领域对锂电池能量密度的需求,因此,以高能量密度著称的锂金属电池引起研究人员的广泛关注。在锂金属电池中,无负极锂金属电池
科学家原位精准测定锂枝晶生长机理
AFM—ETEM纳米电化学测试平台,可实现原位观测纳米固态电池中锂枝晶生长机制及其力学性能和力—电耦合精准定量测量。 1月6日,Nature Nanotechnology发表了燕山大学亚稳材料制备技术与科学国家重点实验室教授黄建宇、沈同德与国内外科学家合作的一项研究论文,题为Lithium whi
意大利研发出可“闪充”的高能量密度半固态锂氧电池
意大利博洛尼亚大学发布消息称,该校研究人员经过8年努力,研发出了新型半固态氧流量锂电池NESSOX。具有高达1兆瓦时/吨能量密度,可以像汽车“加油”一样,在几分钟内通过更换电池内部液体电解质完成充电。该电池采用一种新型液体电解质,能够有效抑制导致电池失效的物质生成,并保持电池性能稳定,这种新型高
意大利研发出可“闪充”的高能量密度半固态锂氧电池
意大利博洛尼亚大学发布消息称,该校研究人员经过8年努力,研发出了新型半固态氧流量锂电池NESSOX。具有高达1兆瓦时/吨能量密度,可以像汽车“加油”一样,在几分钟内通过更换电池内部液体电解质完成充电。该电池采用一种新型液体电解质,能够有效抑制导致电池失效的物质生成,并保持电池性能稳定,这种新型高
-金属所在高能量密度锂硫电池研究上取得进展
单质硫作为锂硫二次电池正极材料的理论比容量高达1675 mAh g−1,与金属锂构成的二次电池体系理论比能量密度可达2600Wh/kg,是商业钴酸锂/石墨锂离子电池(理论能量密度360 Wh/kg)的7倍,同时单质硫价格低廉、产量丰富、安全无毒、环境友好,故锂硫电池被认为是很有
青岛能源所在固态锂电池领域取得系列阶段性进展
特斯拉电动车的起火事故接连发生,国内数起均十分严重,甚至整车严重烧毁,让人们对商品锂离子电池的安全性重新审视。传统锂离子电池中的液态有机电解质是燃烧、爆炸隐患的罪魁祸首。尽管电池管理系统可一定程度上保证电池一致性和安全,但当外力碰撞造成穿刺的时候,锂离子电池起火爆炸在所难免。显然,这不是通过单纯
固态、半固态以及液态锂离子电池的对比介绍
1) 能量密度对比 液态电池目前商业化报道的最高能量密度为300wh/kg, 半固态电池:报道360wh/kg,并且通过正负极材料的改进,能量密度将进一步提高。 固态电池,当前能量密度为400wh/kg,有望达到900wh/kg, 固态锂电池体积能量密度因为没有液体和隔膜的存在,相同的容
液态金属的高能量密度电池的材料性能、设计机理与应用
以锂金属为代表的碱金属负极电池作为储能领域的热门体系,虽然拥有高能量密度,但其由支晶引发的安全问题却始终无法避免,从而使其商业化步履维艰。近期,低温或室温液态金属在储能领域的应用给高能量密度碱金属电池提供了可能性,不仅可以直接作为无支晶的碱金属负极,其独特的材料特性还带来了更多的拓展应用。美国德
新型固态电池,能量密度超普通锂电池一倍
科技变革往往从底层技术取得突破开始。移动终端、智能设备、电动汽车、机器人等要想普及,电池技术的突破必不可少。2007 年成立的电池创业公司Sakti3 一直在研发、制造高性能固态锂离子电池,最近他们刚刚获得Dyson1500万美元的新融资。 自锂电池诞生以来,一直都是使用液
金属所高能量密度锂离子超级电容器研究取得系列进展
随着电动汽车、清洁能源存储及便携式电子产品的快速发展,开发与之相匹配的兼具高能量、高功率、长寿命的电化学储能器件成为目前的迫切需求。超级电容器又称电化学电容器,是目前最重要的电能储存装置之一,其数秒内的快速充放电、上万次的循环寿命、百分之百的充放电效率及高的安全性是锂离子电池等二次电池所无法比拟
新型高能量密度炸药分子问世
记者8月10日从中国工程物理研究院化工材料研究所获悉,该所含能材料基因中心含能分子创制团队用两步法合成了新型高能量密度炸药分子二硝胺联公式二唑,该成果已在《自然·通讯》杂志上在线发表,这是我国炸药领域科学家在该杂志上发表的首篇研究论文。 传统由碳、氢、氮、氧4种元素组成的有机炸药分子存在一个堆
新型高能量密度炸药分子问世
记者10日从中国工程物理研究院化工材料研究所获悉,该所含能材料基因中心含能分子创制团队用两步法合成了新型高能量密度炸药分子二硝胺联(口恶)二唑,该成果已在《自然·通讯》杂志上在线发表,这是我国炸药领域科学家在该杂志上发表的首篇研究论文。 传统由碳、氢、氮、氧4种元素组成的有机炸药分子存在一个
青岛能源所在动力电池聚合物电解质材料研发方面取得进展
随着全球能源短缺、环境污染不断加剧,大力开发以纯电动汽车为代表的新型近零排放汽车是国家确定的发展战略之一。高效、安全、可靠的动力电池是制约新型近零排放汽车产业的瓶颈,也是新能源汽车的“短板”之一。当前动力电池存在的最大安全隐患是电池热失控,中国科学院青岛生物能源与过程研究所青岛储能产业技术研究院
中科院金属所研发出高能量密度锂离子超级电容器
记者日前从中科院金属所获悉,该所沈阳材料科学国家(联合)实验室先进炭材料研究部的科研人员在超级电容器领域取得一系列突破,研发出高能量密度的锂离子超级电容器。 研究发现,造成超级电容器低能量密度的根源之一是组装成器件后,正、负电极无法在最优的电位窗口下工作。为解决这一问题,他们提出了新的方法,极
青岛能源所开发均质化正极材料实现全固态锂电池新突破
采用不可燃无机固态电解质的全固态锂电池可以满足对高安全性储能系统日益增长的需求。全固态锂电池通常采用包含了电极活性材料、导电子和导离子助剂的复合电极。不同组分之间在化学、电化学和力学等性能上难以完美匹配从而诱发多种界面问题,严重恶化电池能量密度和使用寿命。 近日,中国科学院青岛生物能源与过程研
商用碳布作为实用锂金属电池基底的研究
研究背景虽然锂离子电池已经研究了三十多年了,但其有限的能量密度从某种程度上来说还是不能满足当前电动汽车的续航里程焦虑。因此,开发安全、可靠、低成本、高能量密度的电池已成为当务之急。其中,金属锂阳极的理论容量高达3860.0 mAh/g,氧化还原电位低至?3.040 V(vs. 标准氢电极,SHE)而
商用碳布作为实用锂金属电池基底的性能研究
研究背景虽然锂离子电池已经研究了三十多年了,但其有限的能量密度从某种程度上来说还是不能满足当前电动汽车的续航里程焦虑。因此,开发安全、可靠、低成本、高能量密度的电池已成为当务之急。其中,金属锂阳极的理论容量高达3860.0 mAh/g,氧化还原电位低至?3.040 V(vs. 标准氢电极,SHE)而
锂电池按极片材料分类和按产品外观分类
A、按极片材料分类 正极材料:磷酸铁锂电池(LFP)、钴酸锂电池(LCO)、锰酸锂电池(LMO)、(二元电池:镍锰酸锂/镍钴酸锂)、(三元:镍钴锰酸锂电池(NCM)、镍钴铝酸锂电池(NCA)) 负极材料:钛酸锂电池(LTO)、石墨烯电池、纳米碳纤维电池 关于市场上的石墨烯概念,主要是指石墨
青岛能源所高电压固态锂电池研究获系列进展
近日,中国科学院青岛生物能源与过程研究所固态能源系统技术中心在高电压固态锂电池关键材料研究方面取得进展。相关成果分别发表在《自然-通讯》、《先进能源材料》、《先进功能材料》和《化学学会评论》等期刊上。采用高电压氧化物正极材料和硫化物固态电解质的全固态锂电池具有高能量密度和高安全性的优势,可显著提升电
锂离子电池的技术前景分析
新型负极材料方面,团队进行了无集流体,无黏结剂电极方面的尝试,可以供应更多电化学位点,从而提高电极比容量。在锂硫电池正极材料方面,其利用双“费歇尔酯化”的模块组装办法,将分散的导电碳组装为椭球型的微米超结构,显著提高了正极单位面积的硫载量,电池能量密度达到545Wh/kg。在动力锂电池安全性方面,团
青岛能源所固态电池产业化技术研究获进展
传统液态锂电池电解质体系采用易挥发、易燃烧和易爆的碳酸酯类溶剂,在高温、高电压或极端条件下使用时存在极大的安全隐患,难以满足电动汽车对动力锂电池进一步提高能量密度和安全性能等方面的迫切需求。因此,开发新型高安全性全固态电解质电池能大幅提高锂电池的能量密度、电池安全性和综合性能,且具有广阔的市场空
科学家揭示全固态锂电池稳定性机制
中新网北京9月13日电(记者孙自法)记者9月13日从中国科学院金属研究所获悉,该所沈阳材料科学国家研究中心王春阳研究员与美国加州大学尔湾分校忻获麟教授团队合作,最新研发并利用人工智能“超级显微镜”——人工智能辅助的透射电子显微镜技术,揭示出全固态锂电池中的层状氧化物正极材料的原子尺度结构退化路径,发
单锂离子导电准固态聚合物刷电解质:无枝晶锂金属电池
在过去的几十年,锂离子电池的能量密度已经达到250 Wh kg-1、但仍不能满足能源时代电动汽车、无人驾驶飞机、智能电网的快速扩张和前所未有的电能消耗需求,因此推动更高能量密度的储能装置发展势在必行。目前,由具有最高能量密度 (3860 mAh g-1) 和最低电化学电位 (-3.04 V vs
使用推杆式热膨胀仪测量固态金属的体积膨胀与密度变化
德国耐驰仪器制造有限公司 随着金属工业的飞速发展,人们越来越多地使用电子计算机参与模具设计,进行铸造过程的模拟。由此,需要对金属材料的热物理性能,包括材料在固、液与熔融区的导热系数、热扩散系数、比热、密度变化等物性参数有很深入的了解。 本文介绍了一种新的测量方法,通过使用标准的推杆式膨胀仪,
金属所等揭示全固态锂电正极材料原子尺度失效机制
全固态锂电池具备高安全性和高能量密度的特点,有望成为超越传统液态锂离子电池的下一代电池技术。而电极材料(包括正极和负极)与固态电解质的界面不稳定性阻碍了固态电池的发展。因此,探讨正极/固态电解质界面不稳定性诱发的电池材料失效机制,对于优化设计全固态电池材料具有重要意义。近日,中国科学院金属研究所沈阳
大连化物所研究制备出超薄二维赝电容正极新材料
近日,中国科学院化学物理研究所研究员吴忠帅团队在构筑高性能二维赝电容多电子反应储锂材料方面取得新进展。团队设计并制备出一种超薄二维VOPO4赝电容正极新材料,显著提升了多电子反应的动力学,构筑出了高能量密度和高功率密度固态锂金属电池。相关成果发表在《先进能源材料》上。 “多电子反应”通常被定义
金属锂复合负极材料可提升锂电池能量密度
金属锂可直接作为负极材料,但存在安全隐患,长期循环使用时,会出现体积膨胀、锂枝晶生长等问题,体积膨胀会导致电极结构坍塌,锂枝晶生长会刺穿电池隔膜,造成电池短路。在锂电池中,负极起到氧化作用,是电路中电子流出的一极,负极材料是构成负极的材料,其性能直接影响锂电池的能量密度。可用于负极的材料种类较多,大