我国纳米光刻技术研究取得突破

日前,中科院光电技术研究所微光刻技术与微光学实验室首次提出基于微结构边际的LSP超分辨光刻技术。该技术利用微纳结构边际作为掩模图形,对表面等离子体进行有效激发,其采用普通I-line、G-line光源获得了特征尺寸小于30纳米的超分辨光刻图形。 据相关负责人介绍,传统的微光刻工艺采用尽可能短的曝光波长,期望获得百纳米甚至几十纳米级别的光刻分辨率。然而,随着曝光波长的缩短,整个光刻装备的成本也急剧上升。以目前主流的193光刻机为例,其售价为几千万美元。如此高昂的成本严重限制了短波长光源光刻技术的应用。 近年来,表面等离子体光学的提出为微光刻技术的发展提供了新的选择。利用表面等离子体波的短波长,通过合理的设计掩模图形和工艺参数,超分辨的纳米光刻技术有望形成。 在此背景下,该所研究员提出了基于微结构边际的LSP超分辨光刻技术。理论研究表明,该技术可获得特征尺寸小于1/10曝光波长的纳米结构,并利用365纳米光源从实验上获......阅读全文

光刻技术与纳米光刻简介

距离理查德·菲利普斯·费曼著名的演讲“There’s plenty of room at the bottom”有将近60年历史。在他的论文中,他曾问到:“我们怎么样写小?”在今天的科学技术研究中,仍有同样的问题。虽然自上世纪60年代以来,科研技术已经大大进步,半导体行业中使用的线宽已经大幅度下

光刻技术与纳米光刻简介

  距离理查德·菲利普斯·费曼著名的演讲“There’s plenty of room at the bottom”有将近60年历史。在他的论文中,他曾问到:“我们怎么样写小?”在今天的科学技术研究中,仍有同样的问题。虽然自上世纪60年代以来,科研技术已经大大进步,半导体行业中使用的线宽已经大幅度下

光刻技术与纳米光刻简介

  距离理查德·菲利普斯·费曼著名的演讲“There’s plenty of room at the bottom”有将近60年历史。在他的论文中,他曾问到:“我们怎么样写小?”在今天的科学技术研究中,仍有同样的问题。虽然自上世纪60年代以来,科研技术已经大大进步,半导体行业中使用的线宽已经大幅度下

28纳米光刻机如何生产5纳米芯片

28纳米光刻机作为先进半导体芯片制造中的重要设备之一,其本身的生产工艺无法支持5纳米的芯片生产。但是,通过使用一系列先进的制造技术和调整设备参数等手段,可以将28纳米光刻机用于5纳米芯片生产。主要方法包括以下几个方面:1. 使用多重曝光技术:将同一影像进行多次叠加曝光,在不同的位置形成复杂图形,在提

光刻技术首次绘出银纳米结构

  德国柏林亥尔姆茨材料和能源研究中心与联邦材料测试与研究机构合作,首次在银材料底层上完成光刻纳米结构,为未来光计算机数据处理、新型电子器件制造开辟了新的途径。这项成果刊登在美国化学学会的《应用材料和界面》杂志上。   要想在材料表面获得精细结构图样,最佳选择是采用电子显微镜扫描技术,利用电子束在其

我国纳米光刻技术研究取得突破

  日前,中科院光电技术研究所微光刻技术与微光学实验室首次提出基于微结构边际的LSP超分辨光刻技术。该技术利用微纳结构边际作为掩模图形,对表面等离子体进行有效激发,其采用普通I-line、G-line光源获得了特征尺寸小于30纳米的超分辨光刻图形。    据相关负责人介绍,传统的微光刻工艺采用尽可能

美开发出热蘸笔纳米光刻技术

  据美国物理学家组织网11月7日报道,美国科学家首次厘清了温度在蘸笔纳米光刻技术中的作用,据此研制出的热蘸笔纳米光刻技术能在物质表面构造大小为20纳米的结构。借助这一技术,科学家们能廉价地在多种材料表面构造和种植出纳米结构,用以制造电路和化学传感器,或者研究药物如何依附于蛋白质和病

巧用沾笔纳米光刻技术获得超材料

沾笔纳米光刻工艺示意图   你或许没有想过将坚硬的金属或半导体与柔软的有机物或生物产品结合起来会是何种情景,不过美国科学家可以告诉你的是,他们获得了自然界从没有见过的混合材料,而这些混合材料在医学和制造业中将具有惊人的应用前景。   美国佛罗里达州立大学综合纳米研究所(INSI)的科学家

欧盟纳米压印光刻技术实现低成本批量生产感应薄膜

   纳米结构传感器阵列(NSA),以其在单一检测装置有效检测样品中分子或分子一部分的大面积多参数传感优势,而在制药业、环保等其它行业得到广泛应用。但直到目前,其实验室规模小批量生产导致相对较高的制造成本,一定程度上限制了新兴技术在更大范围内的商业化推广应用。欧盟第七研发框架计划(FP7)提供490

几秒内!显微镜投影光刻实现高分辨率制造

  最新发表在《光:先进制造》上的一篇新论文中,德国汉诺威莱布尼茨大学科学家开发了一种低成本且用户友好的制造技术——基于UV—LED的显微镜投影光刻(MPP),能在几秒钟内以快速高分辨率制造光学元件。这种方法能在紫外光照射下,将光掩模上的结构图案转移到光刻胶涂层的基板上。A:采用基于UV—LED的显

微纳3D打印,更精准更宏观

飞秒激光直写无机纳米结构的光场分布示意图。(郑美玲提供)   飞秒激光被用于眼科手术治疗近视,已经为人熟知。 但它能做得远不止于此。飞秒激光直写作为一种有效的三维微纳精细加工技术,可以在多种透明光学材料中实现微小型

微纳3D打印,更精准更宏观

飞秒激光直写无机纳米结构的光场分布示意图。(郑美玲提供)   飞秒激光被用于眼科手术治疗近视,已经为人熟知。 但它能做得远不止于此。飞秒激光直写作为一种有效的三维微纳精细加工技术,可以在多种透明光学材料中实现微小型

紫外纳米压印光刻机提升我国微纳级制造业能力

  记者日前从中科院光电技术研究所获悉,该所微电子专用设备研发团队已自主研制出一种新型紫外纳米压印光刻机,其成本仅为国外同类设备1/3,将有力推进我国芯片加工等微纳级结构器件制造水平迈上新的台阶。  光刻机是微纳图形加工的专用高端设备。光电所微电子装备总体研究室主任胡松介绍,这套设备采用新型纳米对准

利用三维飞秒激光光刻技术制备纳米晶体结构

  材料本身的光学性质不仅取决于其化学性质,还取决于其亚波长结构。由此而来的诸如光子晶体和超材料等,拓展了人们对于光学结构和光学材料的认识,展现出不同于自然材料的新奇现象和功能。然而,在过去的研究中,光学晶体的纳米结构集中于材料的二维表面。这是因为应力诱导的裂纹形成和传播使得高精度的三维体积加工具有

电工所科技前沿论坛“微光刻与电子束光刻技术”开讲

  从1958年世界第一块平面集成电路到2012年04月24日英特尔在北京天文馆正式发布核心代号为Ivy Bridge的第三代酷睿处理器—英特尔首款22纳米工艺处理器,短短五十多年,微电子技术一直遵循着摩尔定律,发展势头迅猛。   针对微光刻与电子束光刻技术发展图谱,7月6日,中科院微电子所陈

郑美玲团队等在飞秒激光直写三维无机纳米结构获进展

  近年来,三维(3D)无机纳米结构的精确可控制备技术是研究热点,在航空航天、微电子器件、量子芯片、太阳能电池和结构材料等领域具有重要作用。无机材料前驱物容易结晶,导致难以一次性直接制备3D无机微纳结构。激光3D打印技术是制备三维无机微结构的重要手段之一,但在制备无机微结构时,其特征尺寸和加工分辨率

极紫外线光刻机和简介和功能

  极紫外线光刻机是芯片生产工具,是生产大规模集成电路的核心设备,对芯片工艺有着决定性的影响。小于5纳米的芯片晶圆,只能用EUV光刻机生产。  2018年4月,中芯国际向阿斯麦下单了一台EUV(极紫外线)光刻机,预计将于2019年初交货。  功能  光刻机(又称曝光机)是生产大规模集成电路的核心设备

唐本忠:纳米光学革命正在到来

  去年3月2日,《自然》杂志发表一篇新闻深度分析文章,预测“纳米光学革命”的来临(“The nanolight revolution is coming” Nature, 2016, 531, 26.)。量子点(quantum dots)和聚合物点(polymer dots)是一直备受关注的纳米发

光学纳米材料用作抗癌和抗菌剂

一个纳米是1mm的百万分之一,比人的头发丝还细一千倍。纳米光学是最重要的未来学科之一,借助于纳米光学知识可以改变材料的原子结构。因为它将带来电信、医疗诊断或照明技术领域的革新。举两个例子:有机的发光二极管由纳米薄层构成,可用电活化,且可达百分之百的发光效率, 甚至可以在柔性基体上使用且无热

微电子所在14纳米产学研合作中取得显著成果

  近期,中国科学院微电子研究所先导工艺研发中心研究员韦亚一团队与中芯国际集成电路新技术研发(上海)有限公司在负显影光刻胶建模和光源掩模协同优化方面开展深入合作,围绕14纳米节点中光刻研发所面临的各项工艺挑战进行联合技术攻关并取得显著进展,完成了后段制程中特定关键层的模型校准工作。结果表明,对于负显

新型光刻机提升微纳实用制造水平

  中科院光电技术研究所微电子专用设备研发团队,近日自主研制成功紫外纳米压印光刻机。该机器将新型纳米压印高分辨力光刻技术与紫外光刻技术有机结合,成本仅为国外同类设备的1/3,并在同一加工平台上实现了微米到纳米级的跨尺度图形加工,使我国微纳实用制造水平迈上新的台阶。  光刻机是实现微纳图形加工的专用高

光刻机原理

光刻机原理: 是利用光刻机发出的光通过具有图形的光罩对涂有光刻胶的薄片曝光,光刻胶见光后会发生性质变化,从而使光罩上得图形复印到薄片上,从而使薄片具有电子线路图的作用。这就是光刻的作用,类似照相机照相。照相机拍摄的照片是印在底片上,而光刻刻的不是照片,而是电路图和其他电子元件。光刻是集成电路最重要的

光刻机原理

光刻机原理是通过一系列的光源能量、形状控制手段,将光束透射过画着线路图的掩模,经物镜补偿各种光学误差,将线路图成比例缩小后映射到晶圆上,最后形成芯片。就好像原本一个空空如也的大脑,通过光刻技术把指令放进去,那这个大脑才可以运作,而电路图和其他电子元件就是芯片设计人员设计的指令。光刻机就是把芯片制作所

X射线衍射光学部件的制备及其光学性能表征(一)

陈宜方     摘要: 综述了国内外在纳米加工X射线衍射光学透镜方面的研究现状和最新进展。介绍了作者团队过去三年在这方面做的工作。针对衍射透镜关键技术,研发了具有大高宽比形貌的电子束光刻基础工艺;结合金电镀,提出了纳米尺度波带片的制造技术,并将该工艺成功扩展于分辨率板(Siemens s

光刻机是什么

  光刻机又名掩模对准曝光机、曝光系统、光刻系统等,是制造芯片的核心装备。它采用类似照片冲印的技术,把掩膜版上的精细图形通过光线的曝光印制到硅片上。光刻机的种类可分为:接触式曝光、接近式曝光、投影式曝光。  光刻机的工作原理是通过一系列的光源能量、形状控制手段,将光束透射过画着线路图的掩模,经物镜补

《科学》:纳米壳自组装结构呈独特光学性能

  据美国物理学家组织网5月28日(北京时间)报道,美国科学家找到了一种方法,使7个“纳米壳”(nanoshell)自组装成一个具有独特光学性能的“七聚物”。科学家表示,就像儿童使用积木搭建出复杂的建筑物或者车辆一样,这种自组装纳米粒子的方法可以用来制造能够捕捉、存储和弯曲光线的复杂物体,比如化学传

南大研发纳米光学探针-可检测癌症转移

  南京大学化学化工学院蒋锡群课题组日前研发出一种纳米光学探针,可以准确检测体内癌症转移情况。   据了解,在实体瘤中有一种常见现象是肿瘤供氧不足,也叫肿瘤乏氧。乏氧与癌症的发生、发展和转移息息相关,癌细胞的异常增殖会产生局部的乏氧微环境。而蒋锡群课题组研发的纳米探针,对乏氧具有高度的敏感性,可以检

近场光学技术的应用

基于近场光学技术的光学分辨率可以达到纳米量级,突破了传统光学的分辨率衍射极限,这将为科学研究的诸多领域,尤其是纳米科技的发展提供有力的操作、测量方法和仪器系统。目前,基于隐失场探测的近场扫描光学显微镜、近场光谱仪已经在物理、生物、化学、材料科学等领域中得到应用,并且应用范围正在不断地扩大;而基于近场

一文盘点当前微纳加工技术

  微纳加工技术指尺度为亚毫米、微米和纳米量级元件以及由这些元件构成的部件或系统的优化设计、加工、组装、系统集成与应用技术,涉及领域广、多学科交叉融合,其最主要的发展方向是微纳器件与系统(MEMS和NEMS)。微纳器件与系统是在集成电路制作上发展的系列专用技术,研制微型传感器、微型执行器等器件和系统

苏州纳米所三维等离子纳米结构及其光学性质研究获进展

  精确空间定义的等离子纳米结构在等离子增强单分子光谱、等离子手性光学及纳米光电器件研究中具有重要科学意义。组成粒子的尺寸、间距及结构空间构型精确控制的三维等离子纳米结构可能展示在一维和二维结构中难以实现的新颖光学、电学及磁学性质。目前,在“自下而上”构建三维等离子纳米结构的研究中,球形粒子由于其各