基于原子光谱分析原子结构及核外电子运动状态

摘要:本文在普朗克量子假说和爱因斯坦光量子假说基础上,提出了中基子(一种新的基本粒子)假说,揭示了光的量子性本质和原子光谱与原子结构及核外电子运动状态之间的关系.研究结果表明,光量子(即光子)实质上是中基子的集合,光是由中基子组成的,光的本质是粒子性的;光的量子性本质上就是光的中基子性,即光的量子性由组成光的中基子的性质决定,光的量子即为中基子.应用光的量子性可以揭示原子光谱产生的机理;可以根据原子光谱分析原子结构及核外电子运动状态.关键词:光的量子性,原子光谱,原子结构,电子运动状态,光子,中基子假说,中基子 结论:本文在普朗克量子假说和爱因斯坦光量子假说基础上,提出了中基子假说,揭示了光的量子性本质和原子光谱与原子结构及核外电子运动状态之间的关系.得出了如下 结论:光子实质上是中基子的集合,光是由中基子组成的,光的本质是粒子性的;光的量子性本质上就是光的中基子性,即光的量......阅读全文

石墨烯中蛇形运动的电子

  科学家发现当他们拉伸或以其他方式操纵石墨烯的蜂窝结构,或者对其施加电场或磁场时,便可直接控制电流。这标志着人类首次成功地直接控制电子的通-断转变,并且毫无损失的引导电子运行。  虽然二维石墨烯的竞争对手不断涌现,但是还没有哪种新材料能像石墨烯那样让电子如同光子一样以如此小的电

用超快激光“抓拍”运动中电子

相关论文在线发表于《科学》杂志 图片说明:一束激光首先刺激N2O4分子,诱导产生大的振动。第二束激光从振动的分子产生了X光。(图片来源:phyorg网站) 美国和加拿大的科学家日前找到观测分子的新方法——超快激光,以观察当分子形态变化时其电子如何重新分布。相关论文10月30日在线

卤素原子结构特征

原子结构特征最外层电子数相同,均为7个电子,由于电子层数不同,原子半径不同,从F~I原子半径依次增大,因此原子核对最外层的电子的吸引能力依次减弱,从外界获得电子的能力依次减弱,单质的氧化性减弱。

JAMA子刊:防癌运动无处不在!

  近期,悉尼大学Emmanuel Stamatakis教授领衔的研究团队在JAMA Oncology期刊发表最新研究成果,再度揭示了VILPA对健康的重要功效。  研究对可穿戴式设备收集的2.2万余人体力活动数据进行分析,发现每日3.4-3.6分钟的VILPA运动,就与参与者各类癌症发病风险下降1

氧族元素的原子结构

原子序数元素电子层结构8氧2, 616硫2, 8, 634硒2, 8, 18, 652碲2, 8, 18, 18, 684钋2, 8, 18, 32, 18, 6116鉝2, 8, 18, 32, 32, 18, 6相同点·原子最外层有6个电子·反应中易得到2个电子·表现氧化性不同点·除氧外其它氧族

运动与学习记忆研究中动物的运动方式

运动与学习记忆研究中动物的运动方式摘自 读生物论坛 www.dusw.net1.1 游泳训练    游泳是运动与学习记忆实验中运动负荷的主要手段之一,通常把大鼠或小鼠作为游泳运动的研究对象,多采用静水泳池。运动强度需要综合考虑水温、负重、时间等影响因素。1.2 跑台/跑轮运动    段氏动物跑台主要

Cell子刊:为自由基“正名”

  一直以来人们都认为自由基对组织和细胞有害,一项新研究发现由细胞线粒体生成的自由基实际上有利于伤口的愈合。  来自加州大学圣地亚哥分校的生物学家们,发现通常被称作为自由基的“活性氧簇”是实验室线虫皮肤伤口适当愈合的必要条件。  在发表在10月13日《发育细胞》(Developmental Cell

纯电场引导电子运动首次实现

  据美国物理学家组织网5月10日报道,德国科学家首次使用纯电场,对电子进行了有效地引导。新的电导技术就像光纤中的波导一样,有望应用于导物质波实验、非侵入性电子显微镜等多个领域。相关研究发表在5月9日出版的《物理评论快报》上。   厘清电子的属性对人们理解自然界的基本法则非常重要。电子是首个显示出具

监测汗液,“电子帽”让运动更安全

原文地址:http://news.sciencenet.cn/htmlnews/2023/6/502908.shtm

细菌与电子的运动方式异曲同工

  自然界确实存在普遍的“模式”,这与物体的大小、种类或所处环境无关。例如,树干与血管的分支形状十分相似,而软体动物与卷心菜的螺旋结构如出一辙。现在麻省理工学院和剑桥大学的科学家发现,细菌与电子的集体运动也出人意料地相似:当成千上万细菌通过微流体晶格时,它们同步运动的方式与电子在磁场中围绕原子核运动

水中电子阿秒级运动首次“定格”

原文地址:http://news.sciencenet.cn/htmlnews/2024/2/517600.shtm科技日报北京2月17日电 (记者张佳欣)在一项类似于定格摄影的实验中,美国和德国科学家团队首次拍摄了液态水中电子实时运动的“定格帧”。发表在最新一期《科学》杂志上的这项成果标志着实验物

水中电子阿秒级运动首次“定格”

在一项类似于定格摄影的实验中,美国和德国科学家团队首次拍摄了液态水中电子实时运动的“定格帧”。发表在最新一期《科学》杂志上的这项成果标志着实验物理学的重大进步。该研究提供了一个窗口,使科学家能在以前用X射线无法企及的时间尺度上了解液体中分子的电子结构。科学家使用同步阿秒X射线脉冲对(图中粉色和绿色)

运动前和运动中饮用西红柿汁可缓解疲劳

                日本一个研究小组日前报告说,实验鼠运动前和运动中喝纯西红柿汁,有减轻运动疲劳的效果。   在以往的研究中,研究人员就发现西红柿含有抗氧化物质番茄红素以及多种维生素、矿物质和有机酸等营养成分,能减轻疲劳。为了弄清西红柿汁在抗疲劳方面的具体作用,日本著名食品企业可果美公

酮体在运动中的作用?

  酮体在运动中的作用是多方面的,尤其在长时间的耐力运动中更为显著。以下是酮体在运动中的一些主要作用:  能量供应:在进行长时间耐力运动时,身体的糖原储备逐渐消耗,此时脂肪成为主要的能量来源。肝脏将脂肪酸转化为酮体,然后输送到肌肉和脑等组织作为能量来源。这样,酮体就帮助维持了运动期间的能量供应。  

Cell子刊:运动能大幅提高“减肥激素”的水平

  日前,《细胞》子刊《Cell Metabolism》上刊登了一篇引人关注的论文:在一项综合性研究中,哈佛大学医学院的Laurie Goodyear教授团队找到了一款“减肥激素”。它让我们对脂肪代谢的认识又更深了一层。   ▲本研究的通讯作者之一Laurie Goodyear教授(图片来源:

Science子刊:揭示运动预防胰岛素抵抗机制

  在一项新的研究中,来自澳大利亚莫纳什大学的研究人员发现了一种称为NADPH氧化酶4(NADPH oxidase 4, NOX4)的酶,它是运动改善我们健康的关键。重要的是,这一发现为开发促进这种酶活性的药物以便保护人们免受衰老对代谢健康的影响提供了可能性。相关研究结果发表在2021年12月15日

腐植酸肥:“减肥”运动中求增量

  在《到2020年化肥使用量零增长行动方案》和即将出台的《土壤污染防治行动计划》驱动下,腐植酸肥料应该一马当先,发挥其改善化肥质量、提高化肥利用率、反哺土壤、促农增收的重要作用,在化肥减量行动中成为增量,保障国家粮食安全。在5月28~29日于北京举行的“化肥减量,腐植酸肥料增量,确保我国粮食生产安

卤族元素的元素性质原子结构特征

原子结构特征最外层电子数相同,均为7个电子,由于电子层数不同,原子半径不同,从F~I原子半径依次增大,因此原子核对最外层的电子的吸引能力依次减弱,从外界获得电子的能力依次减弱,单质的氧化性减弱。相似性卤素的化学性质都很相似,它们的最外电子层上都有7个电子,有取得一个电子形成稳定的八隅体结构的卤离子的

研究可视化观察增强子和启动子的动态运动控制基因活性

  尽管密集地排列在细胞核中,但储存我们遗传信息的染色体总是处于运动状态。这使得染色体的特定区域能够被接触到,从而激活一些基因。在一项新的研究中,来自奥地利科技学院、美国普林斯顿大学和法国巴斯德研究所的研究人员可视化观察这一动态过程,并对DNA的物理特性提出了新的见解。相关研究结果发表在2023年6

人类拍摄到半导体材料内部电子运动

  英国《自然·纳米技术》杂志11日在线发表论文称,科学家们利用飞秒技术首次成功拍摄到半导体材料内部电子状态变化。该成果将提供对半导体核心器件前所未有的洞察。  自20世纪后期以来,半导体器件技术进步集中且明显,譬如晶体管、二极管以及太阳能电池等。这些器件的核心,正是电子在半导体材料中进行的内部运动

ABC三层石墨烯中的电子红外声子耦合研究获进展

  堆垛是二维层状材料一个独特的结构自由度,在对称性破缺和各种新奇的电学、光学、磁学以及拓扑现象等方面发挥着重要作用。例如,与具有中心对称性的2H堆垛双层二硫化钼形成明显对比,3R堆垛双层二硫化钼的空间反演对称性是破损的,为光谷电子学和非线性物理提供了一个理想平台。    图1:不同极性体系的LO声

我国强磁场红外光谱研究铁基超导中狄拉克费米子获进展

  凝聚态物质中的无质量狄拉克(Dirac)费米子是一类能量与动量呈线性关系并且其导带和价带在动量空间某点能量简并的准粒子。由于其对于诸多量子现象的产生起关键性的作用,因此在凝聚态物质中寻找无质量狄拉克费米子是目前凝聚态物理研究最活跃的领域之一。图1 (a)反铁磁态下(温度T ≈ 4.5 K)BaF

有机电子设备将会取代硅基电子产品

  人们对再生能源的需求已经从硅基电子转向了有机电子设备。  一个国际研究小组已经开发出一种由光发电的有机电子设备。跟预期相比,新产品的寿命会延长大概10000倍。  科学家们创造出了一种基于有机分子的小型设备。这种设备带有可以生成电位阱的内嵌电场。其中,电位阱负责捕捉和保护电荷

“水合离子的原子结构和幻数效应”入2018中国科学十大进展

  2019年2月27日上午,2018年度中国科学十大进展发布,相关领域的专家逐项解读了入选本年度十大进展的成果。国家重点研发计划“量子调控与量子信息”重点专项支持的“揭示水合离子的原子结构和幻数效应”入选2018年度中国科学十大进展。该成果由北京大学江颖、王恩哥等合作完成。该工作首次澄清了界面上离

微电子所在新型硅基环栅纳米线MOS器件研究中取得进展

  近日,中国科学院微电子研究所集成电路先导工艺研发中心在面向5纳米以下技术代的新型硅基环栅纳米线(Gate-all-around silicon nanowire,GAA SiNW)MOS器件的结构和制造方法研究中取得新进展。  5纳米以下集成电路技术中现有的FinFET器件结构面临诸多挑战。环栅

研究实现巴豆醛高选择性加氢

近日,中国科学院大连化学物理研究所研究员李勇、研究员申文杰等与中国科学技术大学李微雪教授、德国卡尔鲁斯厄理工学院汪跃民教授等合作,在调控金属催化剂活性位原子结构方面取得新进展,构建了Pt-Fe-Pt三聚体原子结构以此实现巴豆醛高选择性加氢。相关成果发表在《化学》上。Pt-Fe-Pt三聚体原子结构。大

新技术揭示铁电纳米材料亚原子结构

  据物理学家组织网7月9日(北京时间)报道,最近,美国能源部布鲁克海文国家实验室、劳伦斯·伯克利国家实验室等利用电子全息摄影技术,拍下铁电纳米材料亚原子结构,并揭示了它的性质。研究人员指出,这是迄今拍下铁电亚原子结构最小尺度,有助于理解铁电材料的性质,扩大其研发和应用,研发新一代先进电子设备。相关

-窥探原子结构秘密-晶体学一百年

  随着技术进步,发现的步伐也在加速:每年数以万计的新结构留下影像。   1914年,德国科学家Max von Laue因发现晶体如何衍射X射线而摘得诺贝尔物理学奖桂冠,这一发现直接推动了X射线晶体学的出现。从那时以来,研究人员利用衍射推算出了越来越多复杂分子的晶体结构,从简单矿物到

冷冻电镜技术揭开重要蛋白原子结构

  据物理学家组织网10月30日报道,英国科学家利用2017年诺贝尔化学奖重要成果——冷冻电镜技术,攻克了与基因表达有关的一种重要蛋白的结构难题。发表在最新一期《科学》杂志上的相关论文称,蛋白结构显示,流感病毒可与该蛋白中特定位点结合,摧毁细胞的基因表达能力,为深入研究流感、癌症等疾病打开了一扇大门

Nature子刊:运动锻炼能够增强减肥带来的代谢健康益处

  胰岛素抵抗血糖代谢常与肥胖有关。过去的研究表明,配合饮食与运动可为肥胖个体带来更好的治疗效果,反映在减重的增多和心脏代谢健康的改善。但这一组合对胰岛素敏感性的作用还不明确。  但对于肥胖和糖尿病前期患者,在饮食减肥计划中进行额外的运动锻炼,是否会带来更好的治疗效果,目前尚不清楚。  2023年6