PKIVolocity6.0升级版专为生物学研究者优化设计

PerkinElmer Volocity ® 6.0升级版代表了 Volocity Quantitation 在功能与简洁性方面的重要进步。 Volocity 6.0— 便于进一步理解细胞内及细胞间关系: 更加轻而易举地定义和测量细胞、细胞器或其他生物结构及其相互关系。 在全场或者生物学相关区室(如细胞或细胞核等)内,以 3D 方式测量结构之间的距离。 借助更丰富的交互功能和更简单的工作流程,更加轻松快捷地获取量化 3D 答案。 对不是在 Volocity 软件中获得的数据执行 FRAP 分析(需要 FRAP 插件和 Volocity Quantitation)。 更快速、更简单地导出多种经过处理的图像,以供演示或其他应用之需。 了解Volocity 软件新功能的更多信息,包括有关现有 Volocity 软件用户如何充分......阅读全文

肿瘤细胞的标记及活体荧光成像

摘要 以绿色荧光蛋白( GFP) 作为标记基因转入人类肺癌细胞系(ASTC2a21) , 经800 mg/ L G418 筛选, 获得5 株高表达细胞系. 利用流式细胞仪对GFP 表达的稳定性进行了初步研究, 结果表明本实验中有些细胞株间GFP 表达稳定性有显著差异( P < 0101) . 将稳定

活体成像中荧光色素标记细胞的方法

实验概要本实验以研究干细胞活体移植后的存活率为例,简介了一两种内源性荧光色素标记的实验方法。实验原理活体光学成像(Optical in vivo Imaging)主要采用生物发光(bioluminescence)技术与荧光(fluorescence)技术。生物发光是用荧光素酶(Lucifer

活体荧光成像系统介绍(一)

一、  技术简介活体生物荧光成像技术(in vivo bioluminescence imaging)是近年来发展起来的一项分子、基因表达的分析检测系统。它由敏感的CCD及其分析软件和作为报告子的荧光素酶(luciferase)以及荧光素(luciferin)组成。利用灵敏的检测方法,让研究人员

活体GFP绿色荧光成像系统

  系统提供动物活体绿色荧光蛋白的实时观察与成像等一系列的荧光检测。能够应用在像深度肿瘤,大动物等活体肿瘤追踪观察成像研究。    该设备是一个高灵敏度的图像成像工作系统,主要利用特定波长的激光进行激发后,通过高灵敏度的致冷CCD进行实时检测后,获得所需的各类 特性的图像,有利于进一步的分析作用 。

活体荧光成像系统介绍(二)

五、生产厂家1.美国KODAKImage Station In-Vivo FX多功能活体成像系统1.1简介:该系统采用了Kodak公司科研级的超高灵敏度4百万象素冷CCD,高安全标准的X-光模块,以及ZL的放射性同位素磷屏等技术,实现了化学发光、全波长范围荧光、放射性同位素以及X-光等的多功能检测功

活体成像中荧光色素标记细胞的方法举例

活体成像中荧光色素标记细胞的方法举例    活体光学成像(Optical in vivo Imaging)主要采用生物发光(bioluminescence)技术与荧光(fluorescence)技术。生物发光是用荧光素酶(Luciferase)基因标记细胞或DNA,今天,生物发光标记物可以标记到任何

活体成像中荧光色素标记细胞的方法举例

   活体光学成像(Optical in vivo Imaging)主要采用生物发光(bioluminescence)技术与荧光(fluorescence)技术。生物发光是用荧光素酶(Luciferase)基因标记细胞或DNA,今天,生物发光标记物可以标记到任何一种基因上,使对基因功能的全面细致研究

活体成像中荧光色素标记细胞的方法举例

 活体光学成像(Optical in vivo Imaging)主要采用生物发光(bioluminescence)技术与荧光(fluorescence)技术。生物发光是用荧光素酶(Luciferase)基因标记细胞或DNA,今天,生物发光标记物可以标记到任何一种基因上,使对基因功能的全面细致研究

活体成像中荧光色素标记细胞的方法举例

  活体光学成像(Optical in vivo Imaging)主要采用生物发光(bioluminescence)技术与荧光(fluorescence)技术。生物发光是用荧光素酶(Luciferase)基因标记细胞或DNA,今天,生物发光标记物可以标记到任何一种基因上,使对基因功能的全面细致研

活体多光谱荧光成像应用实例(三)

总结活体多光谱荧光成像可以扣除组织自体荧光和进行多种荧光团成像。这可以增强信噪比并进行先进的多重荧光成像,实现更强大的研究设计。参考文献[1] Levenson RM, Lynch DT, Kobayashi H, Backer JM, Backer MV (2008). Multiplexing

活体多光谱荧光成像应用实例(二)

优化和多光谱建模启始成像和研究设置包括用于优化设置和建模的初始步骤:1- 荧光团成像(体外)2- 生成光谱模型3- 体内模型评估首先,我们建议您使用上文确定的滤光片对稀释后的荧光团进行成像。一旦采集到图像,通过将高斯曲线拟合到荧光团的实验曲线来创建光谱曲线(图7)。应用光谱模型 一旦光谱曲线实现了优

活体多光谱荧光成像应用实例(一)

前言传统的活体光学荧光成像(FLI)采用一个激发滤光片和一个发射滤光片。这对于区分靶向信号、可能存在的报告基因信号以及自体荧光组织信号而言有着诸多局限。多光谱(MS)FLI 采用多个激发滤光片和单个发射滤光片,或单个激发滤光片搭配多个发射滤光片,可以产生独特的荧光区域或材料的光谱曲线。(1)因此,图

杨弋团队发明新型荧光探针-可监测单细胞和活体动物代谢

  华东理工大学生物反应器工程国家重点实验室、上海生物制造技术协同创新中心杨弋团队首创了一种可监测单细胞和活体动物代谢状态的新型荧光探针,并筛选到一个高效的抗癌化合物,揭示了其机制。5月5日,相关研究成果发表于《细胞—代谢》杂志。  癌细胞代谢的改变是肿瘤发生与生长的根本原因;通过控制癌细胞的异常代

-Nature:iPS细胞的活体生成

  Manuel Serrano 及同事首次发现,体细胞被经典“Yamanaka因子”Oct4、Sox2、Klf4和c-Myc重新编程为具有多能性的过程可以在活体中实现。对从小鼠的胃、小肠、胰腺和肾脏细胞在活体中诱导生成的“诱导多能干”(iPS) 细胞所做分析显示,它们比在体外生成的iPS细

Nature:活体实时追踪干细胞

  来自耶鲁医学院的研究人员首次在未受损伤的动物体内观察和操纵了组织再生过程中干细胞的行为。相关论文发布在7月1日的《自然》(Nature)杂志上。   组织发育与再生依赖于细胞与细胞间的相互作用和靶向干细胞及直系后代的信号。然而,目前对于导致适当组织再生的细胞行为还不是很理解。   在这篇文章

活体流式细胞仪

活体流式细胞仪(In vivo Flow Cytometer, IVFC)是一种新的生物医学光学仪器,结合活体(近红外)实时高速影像方法和体外流式细胞仪的概念,可实时检测活体CTC并可以进行定量分析与检/监测,可用于实验室对肿瘤治疗效果的早期实时监测及评估,药物的早期筛选等。IVFC技术原理是:带有

如何选择小动物活体荧光成像系统

小动物活体荧光成像技术在国内外得到越来越的普及应用,越来越多的科研人员希望能通过该技术来长时间追踪观察活体动物体内肿瘤细胞的生长以及对药物治疗的反应,希望能观察到荧光标记的多肽、抗体、小分子药物在体内的分布和代谢情况。与传统技术相比,活体荧光成像技术不需要杀死动物,可以对同一个动物进行长时间反复跟踪

如何选择小动物活体荧光成像系统

小动物活体荧光成像技术在国内外得到越来越的普及应用,越来越多的科研人员希望能通过该技术来长时间追踪观察活体动物体内肿瘤细胞的生长以及对药物治疗的反应,希望能观察到荧光标记的多肽、抗体、小分子药物在体内的分布和代谢情况。与传统技术相比,活体荧光成像技术不需要杀死动物,可以对同一个动物进行长时间反复跟踪

如何选择小动物活体荧光成像系统

小动物活体荧光成像技术在国内外得到越来越的普及应用,越来越多的科研人员希望能通过该技术来长时间追踪观察活体动物体内肿瘤细胞的生长以及对药物治疗的反应,希望能观察到荧光标记的多肽、抗体、小分子药物在体内的分布和代谢情况。与传统技术相比,活体荧光成像技术不需要杀死动物,可以对同一个动物进行长时间反复跟踪

如何选择小动物活体荧光成像系统

小动物活体荧光成像技术在国内外得到越来越的普及应用,越来越多的科研人员希望能通过该技术来长时间追踪观察活体动物体内肿瘤细胞的生长以及对药物治疗的反应,希望能观察到荧光标记的多肽、抗体、小分子药物在体内的分布和代谢情况。与传统技术相比,活体荧光成像技术不需要杀死动物,可以对同一个动物进行长时间反复跟踪

活体成像自发光荧光太强了,怎么屏蔽

不一定,看你的实验目的是什么。如果研究肿瘤模型,那肯定需要裸鼠或者SCID等免疫缺陷型的小鼠了。还有你所用的荧光物质也有关系,Cy5以上应该可以活体成像。只看药物器官分布的话LZ可以用普通的小白鼠然后剖腹观察,染料用Cy3或者其他普遍的FITC都行。

活体成像自发光荧光太强了,怎么屏蔽

不一定,看你的实验目的是什么。如果研究肿瘤模型,那肯定需要裸鼠或者SCID等免疫缺陷型的小鼠了。还有你所用的荧光物质也有关系,Cy5以上应该可以活体成像。只看药物器官分布的话LZ可以用普通的小白鼠然后剖腹观察,染料用Cy3或者其他普遍的FITC都行。

如何选择小动物活体荧光成像系统?

  小动物活体荧光成像技术在国内外得到越来越的普及应用,越来越多的科研人员希望能通过该技术来长时间追踪观察活体动物体内肿瘤细胞的生长以及对药物治疗的反应,希望能观察到荧光标记的多肽、抗体、小分子药物在体内的分布和代谢情况。     与传统技术相比,活体荧光成像技术不需要杀死动物,可以对同一个

如何选择小动物活体荧光成像系统

小动物活体荧光成像技术在国内外得到越来越的普及应用,越来越多的科研人员希望能通过该技术来长时间追踪观察活体动物体内肿瘤细胞的生长以及对药物治疗的反应,希望能观察到荧光标记的多肽、抗体、小分子药物在体内的分布和代谢情况。与传统技术相比,活体荧光成像技术不需要杀死动物,可以对同一个动物进行长时间反复跟踪

活体成像自发光荧光太强了,怎么屏蔽

不一定,看你的实验目的是什么。如果研究肿瘤模型,那肯定需要裸鼠或者SCID等免疫缺陷型的小鼠了。还有你所用的荧光物质也有关系,Cy5以上应该可以活体成像。只看药物器官分布的话LZ可以用普通的小白鼠然后剖腹观察,染料用Cy3或者其他普遍的FITC都行。

如何选择小动物活体荧光成像系统

小动物活体荧光成像技术在国内外得到越来越的普及应用,越来越多的科研人员希望能通过该技术来长时间追踪观察活体动物体内肿瘤细胞的生长以及对药物治疗的反应,希望能观察到荧光标记的多肽、抗体、小分子药物在体内的分布和代谢情况。与传统技术相比,活体荧光成像技术不需要杀死动物,可以对同一个动物进行长时间反复跟踪

活体成像中荧光染料的选择与成像

Cy5.5(Ex/Em:678/701 nm)和Cy7(Ex/Em:749/776 nm)是对分子标记的最优选择之一;DiD(Ex/Em:644/663 nm)、DiR(Ex/Em:748/780)染料则常用于活体成像实验中对细胞进行标记。  一、Cy5.5 、Cy7 Cy5.5 、Cy7避开了可见

Nature:首次活体观察干细胞生成血细胞

  在骨髓中,造血干细胞会在不同成熟阶段,通过祖细胞产生大量的、各种各样的成熟血细胞。最近,来自德国癌症研究中心(DKFZ)的科学家开发出一种方法,给小鼠造血干细胞添加荧光标记,可以从外面打开这个荧光标记。他们使用这一工具,首次在一个活的有机体内观察到,干细胞在正常情况下如何分化

美国-PHOTOMETRICS-活体化学发光和荧光成像系统

  美国 PHOTOMETRICS 活体化学发光和荧光成像系统   随着分子生物学、分子诊断学、基因治疗等学科的发展,“综合形态分析”的概念和应用被逐渐突显出来。研究人员迫切希望,能有一种研究方法和工具,使得他们能够直接捕捉整体动物、植物或微生物的形态变化:对动物、植物或微生物的目的细胞、目的组

美国-PHOTOMETRICS-活体化学发光和荧光成像系统

  美国 PHOTOMETRICS 活体化学发光和荧光成像系统   随着分子生物学、分子诊断学、基因治疗等学科的发展,“综合形态分析”的概念和应用被逐渐突显出来。研究人员迫切希望,能有一种研究方法和工具,使得他们能够直接捕捉整体动物、植物或微生物的形态变化:对动物、植物或微生物的目的细胞、目的组织