单原子存储和单分子逻辑开关技术获突破

《科学》:超高密度存储设备及分子级计算机指日可待 美国IBM公司在最新一期《科学》杂志上发表了两份研究报告,公布了其在单原子存储技术和单分子逻辑开关研究方面取得的技术突破。这是纳米技术领域两项最新的重大科学成就。 在第一份报告中,IBM科学家描述了在测量单个原子的磁各向异性特性方面取得的重大进展。每个原子内部都有磁体,但之前还无人能够测量单个原子的磁各向异性特性。位于美国加州圣何塞的艾曼登实验室的研究者们使用IBM的扫描隧道显微镜来操纵单个铁原子,把它们在准备好的铜表面排列好,以观察每个原子磁各向异性的方向和强度。最后,研究人员成功地在一个单独原子上保存了一比特信息。 对单个原子磁各向异性的测量具有重要技术意义,因为它决定了一个原子储存信息的能力。目前,即使是存储密度最高的硬盘,要想保存一比特的信息也需要大约100万个磁性原子。单原子存储技术实用后可以得到超高密度的存储设备,容量至少相当于目前硬盘......阅读全文

扫描隧道显微镜

   扫描隧道显微镜(scanning tunneling microscope,STM) 由Binnig等1981年发明,根据量子力学原理中的隧道效应而设计。当原子尺度的针尖在不到一个纳米的高度上扫描样品时,此处电子云重叠,外加一电压(2mV~2V),针尖与样品之间产生隧道效应而有电子逸出,形成隧

扫描隧道显微镜-(STM)隧道针尖简介

       隧道针尖的结构是扫描隧道显微技术要解决的主要问题之一。针尖的大小、形状和化学同一性不仅影响着扫描隧道显微镜图象的分辨率和图象的形状,而且也影响着测定的电子态。针尖的宏观结构应使得针尖具有高的弯曲共振频率,从而可以减少相位滞后,提高采集速度。如果针尖的尖端只有一个稳定的原子而不是有多重针

扫描隧道显微镜(STM)

扫描隧道显微镜(STM)的基本原理是利用量子理论中的隧道效应。将原子线度的极细探针和被研究物质的表面作为两个电极,当样品与针尖的距离非常接近时(通常小于1nm),在外加电场的作用下,电子会穿过两个电极之间的势垒流向另一电极。这种现象即是隧道效应。

扫描隧道显微镜简介

  扫描隧道显微镜 Scanning Tunneling Microscope 缩写为STM。它作为一种扫描探针显微术工具,扫描隧道显微镜可以让科学家观察和定位单个原子,它具有比它的同类原子力显微镜更加高的分辨率。  此外,扫描隧道显微镜在低温下(4K)可以利用探针尖端精确操纵原子,因此它在纳米科技

扫描隧道显微镜(STM)

扫描隧道显微镜(STM)主要针对一些特殊导电固体样品的形貌分析。可以达到原子量级的分辨率,但仅适合具有导电性的薄膜材料的形貌分析和表面原子结构分布分析,对纳米粉体材料不能分析。扫描隧道显微镜有原子量级的高分辨率,其平行和垂直于表面方向的分辨率分别为0.1 nm和0.01nm,即能够分辨出单个原子,因

关于扫描隧道显微镜的隧道针尖介绍

  隧道针尖的结构是扫描隧道显微技术要解决的主要问题之一。针尖的大小、形状和化学同一性不仅影响着扫描隧道显微镜图像的分辨率和图像的形状,而且也影响着测定的电子态。  针尖的宏观结构应使得针尖具有高的弯曲共振频率,从而可以减少相位滞后,提高采集速度。如果针尖的尖端只有一个稳定的原子而不是有多重针尖,那

扫描隧道显微镜隧道针尖的相关介绍

  隧道针尖的结构是扫描隧道显微技术要解决的主要问题之一。针尖的大小、形状和化学同一性不仅影响着扫描隧道显微镜图象的分辨率和图象的形状,而且也影响着测定的电子态。  针尖的宏观结构应使得针尖具有高的弯曲共振频率,从而可以减少相位滞后,提高采集速度。如果针尖的尖端只有一个稳定的原子而不是有多重针尖,那

扫描隧道显微镜的原理

  在扫描隧道显微镜(STM)观测样品表面的过程中,扫描探针的结构所起的作用是很重要的。如针尖的曲率半径是影响横向分辨率的关键因素;针尖的尺寸、形状及化学同一性不仅影响到STM图象的分辨率,而且还关系到电子结构的测量。因此,精确地观测描述针尖的几何形状与电子特性对于实验质量的评估有重要的参考价值。

扫描隧道显微镜工作原理

扫描隧道显微镜是根据量子力学中的隧道效应原理,通过探测固体表面原子中电子的隧道电流来分辨固体表面形貌的新型显微装置。根据量子力学原理,由于电子的隧道效应,金属中的电子并不完全局限于金属表面之内,电子云密度并不是在表面边界处突变为零。在金属表面以外,电子云密度呈指数衰减,衰减长度约为1nm。用一个极细

扫描隧道显微镜的诞生

       自有人类文明以来,人们就一直为探索微观世界的奥秘而不懈的努力。1674年,荷兰人列文虎克发明了世界上第一台光学显微镜,并利用这台显微镜首次观察到了血红细胞,从而开始了人类使用仪器来研究微观世界的纪元。光学显微镜的出现,开阔了人们的观察视野,但是由于受到光波波长的限制,光学显微镜的观察范

扫描隧道显微镜(STM)简介

扫描隧道显微镜 Scanning Tunneling Microscope 缩写为STM。它作为一种扫描探针显微术工具,扫描隧道显微镜可以让科学家观察和定位单个原子,它具有比它的同类原子力显微镜更加高的分辨率。此外,扫描隧道显微镜在低温下(4K)可以利用探针尖端精确操纵原子,因此它在纳米科技既是重要

什么是扫描隧道显微镜

扫描隧道显微镜是根据量子力学中的隧道效应原理,通过探测固体表面原子中电子的隧道电流来分辨固体表面形貌的新型显微装置。根据量子力学原理,由于电子的隧道效应,金属中的电子并不完全局限于金属表面之内,电子云密度并不是在表面边界处突变为零。在金属表面以外,电子云密度呈指数衰减,衰减长度约为1nm。用一个极细

扫描隧道显微镜是什么

扫描隧道显微镜是一种扫描探针显微术工具。扫描隧道显微镜ScanningTunnelingMicroscope缩写为STM。它作为一种扫描探针显微术工具,扫描隧道显微镜可以让科学家观察和定位单个原子,它具有比它的同类原子力显微镜更加高的分辨率。此外,扫描隧道显微镜在低温下(4K)可以利用探针尖端精确操

扫描隧道显微镜工作原理

扫描隧道显微镜的工作原理:就如同一根唱针扫过一张唱片,一根探针慢慢地通过要被分析的材料(针尖极为尖锐,仅仅由一个原子组成)。一个小小的电荷被放置在探针上,一股电流从探针流出,通过整个材料,到底层表面。当探针通过单个的原子,流过探针的电流量便有所不同,这些变化被记录下来。电流在流过一个原子的时候有涨有

扫描隧道显微镜具体应用

扫描STM工作时,探针将充分接近样品产生一高度空间限制的电子束,因此在成像工作时,STM具有极高的空间分辨率,可以进行科学观测。探伤及修补STM在对表面进行加工处理的过程中可实时对表面形貌进行成像,用来发现表面各种结构上的缺陷和损伤,并用表面淀积和刻蚀等方法建立或切断连线,以消除缺陷,达到修补的目的

扫描隧道显微镜工作原理

仪器简介扫描探针显微镜是指一类通过微小探针在样品表面扫描,将探针与样品表面间的相互作用转换为表面形貌和特性图像的显微镜。它提供了表面的三维高空间分辨的图像。扫描探针显微镜(SPM)主要包括扫描隧道显微镜(STM)和原子力显微镜(AFM)两种功能。完整的扫描探针显微镜由控制系统和显微镜系统组成。扫描隧

扫描隧道显微镜具体应用

  扫描  STM工作时,探针将充分接近样品产生一高度空间限制的电子束,因此在成像工作时,STM具有极高的空间分辨率,可以进行科学观测。  探伤及修补  STM在对表面进行加工处理的过程中可实时对表面形貌进行成像,用来发现表面各种结构上的缺陷和损伤,并用表面淀积和刻蚀等方法建立或切断连线,以消除缺陷

SPM纳米加工技术

       提示:扫描探针显微镜( scanning probe microscopes,SPM),包括扫描隧道显微镜( STM)、原子力显微镜(AFM)、激光力显微镜(LFM)、磁力显微镜(MFM)等。SPM成为人类在纳米尺度上,观察、改造世界的一种新工具。STM是通过探测隧道电流来感知物体表面

扫描隧道显微镜的放大倍数,到底是3亿倍还是几百万倍

扫描遂道显微镜放大倍数为3亿倍扫描隧道显微镜亦称为“扫描穿隧式显微镜”、“隧道扫描显微镜”,是一种利用量子理论中的隧道效应探测物质表面结构的仪器。它于1981年由格尔德·宾宁(G.Binnig)及海因里希·罗雷尔(H.Rohrer)在IBM位于瑞士苏黎世的苏黎世实验室发明,并且可获得0.01nm的纵

扫描探针显微镜功不可没的历史发展

p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; line-height: 19.0px; font: 13.0px 'Helvetica Neue'} p.p2 {margin: 0.0px 0.0px 0.0px 0.0px; line-height: 19.0px

科研常用的几种显微镜原理及应用介绍

       在科研中常见的几种科研型显微镜主要有扫描探针显微镜,扫描隧道显微镜和原子力显微镜几种,下面对这几种显微镜逐一做以介绍:扫描探针显微镜       扫描探针显微镜(ScanningProbeMicroscope,SPM)是扫描隧道显微镜及在扫描隧道显微镜的基础上发展起来的各种新型探针显微

扫描隧道显微镜与原子力显微镜的扫描异同

  1. constant interaction mode  保持针尖和样品表面相互作用(隧道电流之于STM,原子间作用力之于AFM)的值恒定,这个值一般与针尖和表面间距离相关。  当针尖在xy轴方向移动时,由于样品表面起伏,为了保持电流或原子间作用力的值不变,探针(或样品表面)会在z轴方向作出调

扫描隧道显微镜马达控制简介

  马达控制  当使用软件控制马达使针尖逼近样品时,首先要确保电动马达控制器的红色按钮处于弹起状态,否则探头部分只受电子学控制系统控制,计算机软件对马达的控制不起作用。马达控制软件将控制电动马达以一个微小的步长转动,使针尖缓慢靠近样品,直到进入隧道区为止。  马达控制的操作方式为:“马达控制”选择“

扫描隧道显微镜的工作原理

当原子尺度的针尖在不到一个纳米的高度上扫描样品时,此处电子云重叠,外加一电压(2mV~2V),针尖与样品之间产生隧道效应而有电子逸出,形成隧道电流。电流强度和针尖与样品间的距离有函数关系,当探针沿物质表面按给定高度扫描时,因样品表面原子凹凸不平,使探针与物质表面间的距离不断发生改变,从而引起电流不断

扫描隧道显微镜的功能介绍

扫描隧道显微镜 (Scanning Tunneling Microscope, 缩写为STM) 是一种扫描探针显微术工具,扫描隧道显微镜可以让科学家观察和定位单个原子,它具有比它的同类原子力显微镜更加高的分辨率。此外,扫描隧道显微镜在低温下(4K)可以利用探针尖端精确操纵原子,因此它在纳米科技既是重

扫描隧道显微镜的工作模式

引发化学反应STM在场发射模式时,针尖与样品仍相当接近,此时用不很高的外加电压(最低可到10V左右)就可产生足够高的电场,电子在其作用下将穿越针尖的势垒向空间发射。这些电子具有一定的束流和能量,由于它们在空间运动的距离极小,至样品处来不及发散,故束径很小,一般为毫微米量级,所以可能在毫微米尺度上引起

扫描隧道显微镜的客观评价

  1981年随着扫描隧道显微镜(scanning tunneling microscope)的发明,物理学家作出了一个突破,它为在苏黎世(Zurich)的IBM实验室工作的科学家盖尔德·宾尼(Gerd Bining)和海因里希·罗雷尔(Heinrich Rohrer)赢得了诺贝尔奖。  突然间,物

扫描隧道显微镜的功能介绍

扫描隧道显微镜 (Scanning Tunneling Microscope, 缩写为STM) 是一种扫描探针显微术工具,扫描隧道显微镜可以让科学家观察和定位单个原子,它具有比它的同类原子力显微镜更加高的分辨率。此外,扫描隧道显微镜在低温下(4K)可以利用探针尖端精确操纵原子,因此它在纳米科技既是重

扫描隧道显微镜的工作原理

当原子尺度的针尖在不到一个纳米的高度上扫描样品时,此处电子云重叠,外加一电压(2mV~2V),针尖与样品之间产生隧道效应而有电子逸出,形成隧道电流。电流强度和针尖与样品间的距离有函数关系,当探针沿物质表面按给定高度扫描时,因样品表面原子凹凸不平,使探针与物质表面间的距离不断发生改变,从而引起电流不断

扫描隧道显微镜的结构简介

隧道针尖隧道针尖的结构是扫描隧道显微技术要解决的主要问题之一。针尖的大小、形状和化学同一性不仅影响着扫描隧道显微镜图像的分辨率和图像的形状,而且也影响着测定的电子态。针尖的宏观结构应使得针尖具有高的弯曲共振频率,从而可以减少相位滞后,提高采集速度。如果针尖的尖端只有一个稳定的原子而不是有多重针尖,那