Antpedia LOGO WIKI资讯

单原子存储和单分子逻辑开关技术获突破

《科学》:超高密度存储设备及分子级计算机指日可待 美国IBM公司在最新一期《科学》杂志上发表了两份研究报告,公布了其在单原子存储技术和单分子逻辑开关研究方面取得的技术突破。这是纳米技术领域两项最新的重大科学成就。 在第一份报告中,IBM科学家描述了在测量单个原子的磁各向异性特性方面取得的重大进展。每个原子内部都有磁体,但之前还无人能够测量单个原子的磁各向异性特性。位于美国加州圣何塞的艾曼登实验室的研究者们使用IBM的扫描隧道显微镜来操纵单个铁原子,把它们在准备好的铜表面排列好,以观察每个原子磁各向异性的方向和强度。最后,研究人员成功地在一个单独原子上保存了一比特信息。 对单个原子磁各向异性的测量具有重要技术意义,因为它决定了一个原子储存信息的能力。目前,即使是存储密度最高的硬盘,要想保存一比特的信息也需要大约100万个磁性原子。单原子存储技术实用后可以得到超高密度的存储设备,容量至少相当于目前硬盘......阅读全文

什么是扫描探针显微镜?

p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; line-height: 19.0px; font: 13.0px 'Helvetica Neue'}扫描探针显微镜(Scanning Probe Microscope,SPM)是扫描隧道显微镜及在扫描隧道显微镜的基础上发

分子科学从这里起源——记中科院化学所分子科学创新历程

  开栏寄语:  2016年10月,中国科学院化学研究所将迎来60周岁生日。60年来,几代化学所人不懈努力,顽强拼搏,勇攀高峰,形成了“创新、求是、团结、奉献”的优秀文化,为我国科技事业、国民经济和国防建设作出了重要贡献。如今,化学所以基础研究为主,正在有重点地开展国家急需的、有重大战略目标的高新技

中科院化学所:分子科学从这里起源

开栏寄语:2016年10月,中国科学院化学研究所将迎来60周岁生日。60年来,几代化学所人不懈努力,顽强拼搏,勇攀高峰,形成了创新、求是、团结、奉献的优秀文化,为我国科技事业、国民经济和国防建设作出了重要贡献。如今,化学所以基础研究为主,正在有重点地开展国家急需的、有重大战略目标的高新技术创新研究,

看!这就是盐水

  在日常生活中,舀一勺盐,倒进一杯水里搅一搅,得到一杯盐水,这是再平常不过的事了。但就是这件小事,却难倒了无数大科学家。  人们已经知道,水能溶解很多东西,并与其形成团簇,但这种离子水合物的微观结构和动力学一直是学术界争论的焦点。直到5月14日出版的英国《自然》杂志刊发了一篇北京大学江颖、徐莉梅、

只有在扫描隧道显微镜下才看得的世界最小耐力赛

  法国将举办一场在黄金赛道上进行的38小时纳米汽车耐力大赛。  你听过勒芒24小时耐力赛吗。它是每年在法国南部小城勒芒举行的为期一天的汽车耐力赛。离开勒芒沿着路继续向南,可以抵达图卢兹,在这里,科学家正着手准备一个持续时间更长,完全史无前例的车赛。比赛并非在传统的赛道进行,而是在一个世界上最小的金

科研仪器过度依赖进口拖了创新后腿

  去年“两会”期间,“大型科研设备共享难”成为代表委员热议的话题,今年记者追踪采访发现,与此相关的另一个问题,同样引人深思:我国每年上万亿元的科研固定资产投资中,有60%用于设备进口;部分高端仪器100%依赖进口。政协委员忧心——科研仪器过度依赖进口拖了创新后腿。   “我们的TD—SCDMA技

原子力显微镜的原理及应用

  因为有了超级天文望远镜,我们可以拍下宇宙的永恒美丽; 因为有了照相机,我们可以记录大自然的千奇百怪和绚烂多彩;因为有了光学显微镜,我们揭开了微观世界神秘面纱的一角。然而,由于光波衍射现象的限制,传统光学显微镜的放大率不能无限提高,我们对纳米世界(<1微米,即百万分之一米)的真实面貌还了解较

白春礼获联合国教科文组织纳米科技奖章

  联合国教育、科学及文化组织(UNESCO)11月3日宣布,将“为纳米科学与技术发展作出突出贡献”的奖章授予俄罗斯科学院院士Zhores Ivanovich Alferov和中国科学院院士白春礼。   联合国教科文组织总干事Irina Bokova博士在2日晚上,将奖章颁发给A

原子力显微镜公开了解到熟悉必须掌握的知识点

  一、原子力显微镜的概述   原子力显微镜(Atomic Force Microscope ,AFM),一种可用来研究包括导体、半导体和绝缘体在内的固体材料表面结构的分析仪器。它的横向分辨率可达0.15m,而纵向分辨率可达0.05m,AFM最大的特点是可以测量表面原子之间的力,AFM可测量的最小

姚建年院士:中国化学给世界带来诸多惊喜

       国家自然科学基金委员会副主任 中国化学会理事长 中国科学院院士 姚建年  改革开放30年来,与国内各行各业一样,我国的化学科学研究获得了全方位发展,步入了高速发展时期,无论在基础、应用基础研究还是成果转化、实现产业化

盘点|2019年中国学者在CNS发表30篇文章 近半独立完成 !

  2019年即将结束,中国学者总共在Cell,Nature及Science发表了180项研究成果,其中生命科学领域有105篇,材料学有30篇,化学有12篇,地球科学有15篇,物理学有18篇。我们盘点一下材料学:  按杂志来划分:Cell 发表了0篇,Nature 发表了11篇,Science 发表

扫描探针显微镜与纳米科技

      人类仅仅用眼睛和双手认识和改造世界是有限的,例如:人眼能够直接分辨的最小间隔大约为O.07mm;人的双手虽然灵巧,但不能对微小物体进行精确的控制和操纵。但是人类的思想及其创造性是无限的。当历史发展到二十世纪八十年代,一种以物理学为基础、集多种现代技术为一体的

扫描电镜的类型及其使用方法和工作原理

  目前,已经成功研制出的扫描电镜包括:典型的扫描电镜、扫描透射电镜(STEM)、场发射扫描电镜(FESEM)、冷冻扫描电镜(Cryo-SEM),低压扫描电镜( LVSEM)、环境扫描电镜( ESEM)、扫描隧道显微镜(STM )、扫描探针显微镜( SPM ),原子力显微镜(AFM)等,以下介绍几种

剖析扫描电镜的类型使用方法及工作原理

  目前,已经成功研制出的扫描电镜包括了:典型的扫描电镜、扫描透射电镜(STEM)、场发射扫描电镜(FESEM)、冷冻扫描电镜(Cryo-SEM),低压扫描电镜( LVSEM)、环境扫描电镜( ESEM)、扫描隧道显微镜(STM )、扫描探针显微镜( SPM ),原子力显微镜(AFM)等,以下介绍几

韩国研制出“扫描赛贝克显微镜”

  据韩国4月2日报道,韩国科学技术院(KAIST)和韩国标准科学研究院研究团队成功联合研发出“扫描赛贝克显微镜”(SSM,Scanning Seebeck Microscope),在常温下观测到原子内电子云。   该研究是继“扫描隧道显微镜”(STM,Scanning Tunneling M

超快激光超高真空扫描探针显微镜系统研制成功并推广

  高精尖科学仪器的获得是基础前沿科学探索研究及新发现的最重要因素之一。过去一些年里,我国在超高真空-分子束外延及其相关装备的研制方面与发达国家存在着巨大差距,成为我国相关领域科学研究、应用开发水平、重大原创性科研成果产生的重要瓶颈和掣肘。  作为研究低维材料和表面科学的重要工具,扫描隧道显微镜(S

基于STM、AFM和X射线谱学的表面有机合成综述

  表面科学国际综述期刊Surface Science Reports主编Charles T. Campell邀请,中国科学技术大学国家同步辐射实验室教授朱俊发课题组撰写了题为Confined on-surface organic synthesis: Strategies and mechanis

孙世刚教授:重视基础理论的研究才最有生命力

——纪念我国光谱事业30年,第十五届全国分子光谱学学术会议专家采访报道系列         在这个丰收的金秋季节,我国的光谱学界也迎来了属于自己的收获――第十五届全国分子光谱学学术会议在京隆重召开。此次会议的规模、参会人数以及期刊论文数

关于显微镜你所不知道的故事

生物课上,一台显微镜、一片菜叶子加上一只青蛙或者鲫鱼,一场生物显微解剖课开场了。各自不免兴奋,显微镜是多么神奇的一个东西!它让我们能够看到流淌江水中的各种微生物,能够知晓细胞内形形色色的细胞器,能够区分出猩猩有24对染色体而人却只有23对。    这都要归功于16世纪一个叫Zacharia

关于显微镜你所不知道的故事

 很奇怪,做出显微镜的*人不是生物学家,而是一个观星的人——现代物理学与天文学之父伽利略。1609年,在听说了这个孩子的发明后,他不仅研究明白了这些镜片在一起能够放大很多倍的原理,还制造出了一台更为精密的工具,并将其命名为occhiolino(也被称为little eye)。从此,现代意义

关于显微镜你所不知道的故事

 很奇怪,做出显微镜的*人不是生物学家,而是一个观星的人——现代物理学与天文学之父伽利略。1609年,在听说了这个孩子的发明后,他不仅研究明白了这些镜片在一起能够放大很多倍的原理,还制造出了一台更为精密的工具,并将其命名为occhiolino(也被称为little eye)。从此,现代意义

纳米艺术:微境之美

  看到旁边的图片,千万别以为是哪个抽象主义艺术家的后现代之作。完成这些的,全是正儿八经的科学家。   这些“艺术画”是不能用肉眼“看到”的,只能借助特殊的手段“捕捉”,因为它们实在太小了,是用“纳米”作为计量单位的。   1纳米,仅相当于10个氢原子排列的长度。如果将一个典型纳米颗粒放

追随诺贝尔足迹——2017年北京市电子显微学年会在京召开

  2017年度北京市电子显微学年会在北京天文馆召开。  分析测试百科网讯2017年12月19日,2017年度北京市电子显微学年会在北京天文馆召开,本次会议年会由北京市电镜学会、北京理化分析测试技术学会主办,旨在推动北京及周边地区广大电子显微学的学术及技术水平,促进电子显微学工作者在材料科学,生命科

磁性样品

  看到了 才相信  安得物理论虚实  眼见为真定认知  只是江山多乱序  此峰难断彼峰斯  冠状病毒我们肉眼看不到,故而感觉其无处不在,引得风声鹤唳、更是伤亡惨重。湖北的抗疫我们也亲眼看不到,但借助平面图文却能够“感受”到,虽然感受与亲眼看到有区别。因此,去感受、去看到、然后去行动,是我们的脚步和

仅使用扫描隧道显微镜即可以获得原子分辨率感应磁性

     为了探索单个原子和分子的世界,科学家使用了不依赖于光线或电子的显微镜,而是将其视为类似电唱机的终极版本。这些仪器被称为扫描探针显微镜,使用锋利的针的末端作为尖端,以“读取”由支撑表面上的原子和分子形成的凹槽。为了检测尖端与表面之间的接近性,科学家使用了微小的电

扫描隧道显微镜(STM)与原子力显微镜(AFM)对比

      扫描隧道显微镜(scanning tunneling microscope,缩写为STM),亦称为扫描穿隧式显微镜,是一种利用量子理论中的隧道效应探测物质表面结构的仪器。它于1981年由格尔德·宾宁及海因里希·罗雷尔在IBM位于瑞士苏黎世的苏黎世实验室发明,

扫描探针显微镜发展历史

1981年,Bining,Rohrer在IBM苏黎世实验室发明了扫描隧道显微镜(STM)并为此获得1986年诺贝尔物理奖。STM的出现使人类能够对原子级结构和活动过程进行观察。由于STM需要被测样本必须为导体或半导体,其应用受到一定的局限。  1985年,原子力显微镜(AFM)的发明则将观察对象由导

上海技物所在非局域热电子能量耗散空间成像研究获进展

  中国科学院上海技术物理研究所研究员陆卫和复旦大学研究员安正华的科研团队共同合作,通过散粒噪声对非局域热电子能量耗散进行空间成像研究,相关研究成果Imaging of nonlocal hot-electron energy dissipation via shot noise(DOI: 10.1

27T水冷磁体扫描隧道显微镜原子分辨率成像

     扫描隧道显微镜(STM)诞生于上世纪80年代,是一种集合了精密机械设计、微弱信号测量、智能数据采集的高精尖机电一体化设备。STM不仅能够提供材料表面原子分辨率形貌,还能够结合扫描隧道谱学(STS)获得材料的能带结构信息,这些可以和量子理论进行精确比对,广泛应用

中科院科研进展2017

  Ce基非晶合金的形成机理研究进展  非晶形成的机理以及热力学、动力学和结构对非晶形成能力的影响是材料科学的重要问题之一,目前也是非晶材料和物理领域研究的重点方向之一。物理所汪卫华小组与美国North Carolina大学Wu Yue研究小组合作,采用核磁共振NMR 27Al 方法系统研究了微量元