Antpedia LOGO WIKI资讯

SPM纳米加工技术

提示:扫描探针显微镜( scanning probe microscopes,SPM),包括扫描隧道显微镜( STM)、原子力显微镜(AFM)、激光力显微镜(LFM)、磁力显微镜(MFM)等。SPM成为人类在纳米尺度上,观察、改造世界的一种新工具。STM是通过探测隧道电流来感知物体表面情况的,因而它有一主要缺陷:要求被测样品是导体或半导体,这在一定程度上限制了它 扫描探针显微镜( scanning probe microscopes,SPM),包括扫描隧道显微镜( STM)、原子力显微镜(AFM)、激光力显微镜(LFM)、磁力显微镜(MFM)等。SPM成为人类在纳米尺度上,观察、改造世界的一种新工具。 STM是通过探测隧道电流来感知物体表面情况的,因而它有一主要缺陷:要求被测样品是导体或半导体,这在一定程度上限制了它的应用。......阅读全文

扫描探针纳米加工技术的现状与发展趋势

      在资讯高度发达的今天,信息呈爆炸式增长。对如此众多的信息怎样实现检测、转换、传输、存储和处理成为人们关注的重要问题。在过去的五十年里,晶体管的特征尺寸已按Moore定律由1cm降低到目前的近0.1μm,如今最新型的微处理器集成了4000多万个晶体管,到201

AFM动态电场诱导氧化加工及其电流检测

p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; line-height: 19.0px; font: 13.0px 'Helvetica Neue'}        纳米加工技术是构建新一代纳米电子器件的重要基础技术。而基于扫描探

扫描探针显微镜的先进控制技术研究

     随着科学技术的发展,科学家和工程师们对扫描探针显微镜(Scanning Probe Microscope,SPM)的性能也提出越来越高的要求。扫描探针显微镜具有高精度成像、纳米操纵等功能,它已经广泛物理、化学、生物、医学等基础学科,以及材料、微电子等应用学科。

原子力显微镜在材料科学研究中的应用

       AFM 是利用样品表面与探针之间力的相互作用这一物理现象,因此不受STM 等要求样品表面能够导电的限制,可对导体进行探测,对于不具有导电性的组织、生物材料和有机材料等绝缘体,AFM 同样可得到高分辨率的表面形貌图像,从而使它更具有适应性,更具有广

原子力显微镜(AFM)的工作模式及对样品要求

p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; line-height: 19.0px; font: 13.0px 'Helvetica Neue'}工作模式原子力显微镜的工作模式是以针尖与样品之间的作用力的形式来分类的。主要有以下3种操作模式:接触模式(contact

化学研究中的扫描探针显微学

20世纪80年代初期,扫描隧道显微技术(Scanning Tunneling Microscopy,以下略称为STM)问世[1]。以后仅十余年,以STM为代表的扫描探针显微技术(Scanning Probe Microscopy, SPM)迅速发展,应用也已经拓展到了包括物理、化学、生物、材料等众多

原子力显微镜其他工作模式

 其他模式       除了三种常见的三种工作模式外,原子力显微镜还可以进行下面的工作:       1、横向力显微镜(LFM)       横向力显微镜(LF

原子力显微镜(AFM)之纳米加工

扫描探针纳米加工技术是纳米科技的核心技术之一,其基本的原理是利用SPM的探针-样品纳米可控定位和运动及其相互作用对样品进行纳米加工操纵,常用的纳米加工技术包括:机械刻蚀、电致/场致刻蚀、浸润笔等。

AFM在物理学中的应用

  物理学中,AFM可以用于研究金属和半导体的表面形貌、表面重构、表面电子态及动态过程,超导体表面结构和电子态层状材料中的电荷密度等。从理论上讲,金属的表面结构可由晶体结构推断出来,但实际上金属表面很复杂。衍射分析方法已经表明,在许多情况下,表面形成超晶体结构(称为表面重构),可使表面自由能达到最小

AFM纳米材料与粉体材料的分析

 纳米材料与粉体材料的分析在材料科学中,无论无机材料或有机材料,在研究中都有要研究文献,材料是晶态还是非晶态。分子或原子的存在状态中间化物及各种相的变化,以便找出结构与性质之间的规律。在这些研究中AFM 可以使研究者,从分子或原子水平直接观察晶体或非晶体的形貌、缺陷、空位能、聚集

原子力显微镜在生命科学与材料研究中的重要价值

  原子力显微镜以其操作方便,对样品处理要求不高,原子级分率低,样本可在空气中成者液体中直接观察,可检测的样品范围广等优点,赢得了越越广阔的应用,利用AFM可以观察生物制品的形态结构、检测生物力、观察品体的三结构及插体的生长等,这势必会进一步推动生命科学,材料科学的一步发展。   一、生命科学中的

扫描探针显微镜与纳米科技

      人类仅仅用眼睛和双手认识和改造世界是有限的,例如:人眼能够直接分辨的最小间隔大约为O.07mm;人的双手虽然灵巧,但不能对微小物体进行精确的控制和操纵。但是人类的思想及其创造性是无限的。当历史发展到二十世纪八十年代,一种以物理学为基础、集多种现代技术为一体的

我国学者联合研制了共生型心脏起搏器

  中国科学院北京纳米能源与系统研究所王中林和李舟领导的研究团队与北京市生物医学工程高精尖创新中心和海军军医大学的研究者联合研制了共生型心脏起搏器(SPM, symbiotic cardiac pacemaker),它可以从心脏跳动中获取能量,为起搏器自身提供电能。SPM的能量收集部分为植入式摩擦电

什么是扫描探针显微镜?

p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; line-height: 19.0px; font: 13.0px 'Helvetica Neue'}扫描探针显微镜(Scanning Probe Microscope,SPM)是扫描隧道显微镜及在扫描隧道显微镜的基础上发

超全面锂电材料常用表征技术及经典应用

  在锂离子电池发展的过程当中,我们希望获得大量有用的信息来帮助我们对材料和器件进行数据分析,以得知其各方面的性能。目前,锂离子电池材料和器件常用到的研究方法主要有表征方法和电化学测量。  电化学测试主要分为三个部分:(1)充放电测试,主要看电池充放电性能和倍率等;(2)循环伏安,主要是看电池的充放

扫描探针显微镜扫描器运动误差的研究

对由压电陶瓷的压电误差造成的扫描探针显微镜扫描器的运动误差进行了较详细的实验研究和理论分析,分析了各项误差的产生原因及其实验现象,据此可对误差进行判断和修正。  1 概述  扫描探针显微镜(Scanning Probe Microscope,简称SPM)是指包括扫描隧道显微镜[1](Scanning

“扫描探针显微镜漂移测量方法”国际标准发布

  日前,由中国科学技术大学工程科学学院黄文浩教授主持制订的国际标准“扫描探针显微镜漂移测量方法(ISO11039:2012)”已由国际标准化组织正式发布。   自20世纪80年代扫描探针显微镜(Scanning-probe microscopy,SPM)发明以来,由于其具有原子量级

扫描探针显微镜广泛的应用

        SPM的应用领域是宽广的。无论是物理、化学、生物、医学等基础学科,还是材料、微电子等应用学科都有它的用武之地。     SPM的价格相对于电子显微镜等大型仪器来讲是较低的。     同

岛津SPM-8100FM的应用领域

原子力显微镜经过三十年的发展,技术趋于成熟,在真空下可以达到“原子级”分辨率。但是在实际应用中,绝大多数实验环境需要大气环境甚至液体环境。这两种环境下探针固有的低Q值使图像分辨率急剧变差,甚至无法达到纳米水平。SPM-8100FM真是为了解决此困境而生。运用创新性的调频技术,SPM-8100FM突破

相关探针和电子显微镜™(CPEM)的关联成像技术简介

LiteScope™是一种独特的扫描探针显微镜(SPM)。 它设计用于轻松集成到各种扫描电子显微镜(SEM)中。 组合互补的SPM和SEM技术使其能够利用两者的优势。使用LiteScope™及其可更换探针系列,可以轻松进行复杂的样品分析,包括表面形貌,机械性能,电性能,化学成分,

Hysitron纳米压痕仪满足市场大量的测试需求

Hysitron纳米压痕仪高性能的样品加载系统和传感技术赋予仪器超高的稳定性和广泛的应用领域,支持多种样品类型和多种样品尺寸。TI-950测试方法全面,是zui多样化的纳米力学表征工具,是科学家、工程师和其他各领域用户的zui佳选择。在摩擦、模量成像、动态力学分析、声学发射探测、接触电阻、TEM/S

一种新型的扫描探针显微镜SPM和扫描电子显微镜SEM简介

p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; line-height: 19.0px; font: 13.0px 'Helvetica Neue'} p.p2 {margin: 0.0px 0.0px 0.0px 0.0px; line-height: 19.0px

计量型原子力显微镜

     第一台在纳米测量中,在中等测量范围内,具有微型光纤传导激光干涉三维测量系统、可自校准和进行绝对测量的计量型原子力显微镜。它的诞生,可使目前用于纳米技术研究的扫描隧道显微镜定量化,并将其所测量的纳米量值直接与米定义相衔接。使人们更加准确地了解纳米范围内的各种物理

TI-950 TI-950 纳米压痕仪

TI-950 纳米压痕仪TI-950 纳米压痕仪是全球zui新ling先的纳米力学检测仪器,提供了业界ling先的灵敏度和无可比拟的性能。TI-950 纳米压痕仪的设计为自动的、高通量仪器,支持 Hysitron开发的许多纳米力学表征技术。系统集成了新开发的 perfo

TI-950 TI-950 纳米压痕仪

TI-950 纳米压痕仪是全球zui新ling先的纳米力学检测仪器,提供了业界ling先的灵敏度和无可比拟的性能。TI-950 纳米压痕仪的设计为自动的、高通量仪器,支持 Hysitron开发的许多纳米力学表征技术。系统集成了新开发的 performech TM&nbs

探究扫描探针显微镜工作原理

扫描探针显微镜是一种新型的探针显微镜,是从扫描隧道显微镜的基础上发展起来的各种新型探针显微镜(原子力显微镜,静电力显微镜,磁力显微镜,扫描离子电导显微镜,扫描电化学显微镜等)的统称。它是近年来世界上迅速发展起来的一种表面分析仪器。扫描探针显微镜原理及结构:扫描探针显微镜的基本工作原理是利用探针与样品

2013年度北京电子显微学年会大会报告(一)

  2013年12月24日, 2013年度北京市电子显微学年会在北京天文馆隆重召开,会上,来自中科院、北京大学、北京工业大学、北京建筑大学、钢铁研究总院等多位专家学者带来了关于电镜在教学科研、纳米材料、生物医药、探伤等方面应用的精彩报告,科扬、FEI、蔡司、布鲁克、牛津

第一届国际纳米光谱研讨会召开 聚焦纳米光谱新技术

  分析测试百科网讯 2015年4月28日, “第一届国际纳米光谱新技术交流会”在北京化工大学成功举办。会议由北京化工大学主办,Anasys instrument.Lnc、玛瑞柯(上海)贸易有限公司赞助。会议旨在深入交流各种纳米光谱新技术的发展,分享技术的应用经验与最新实验成果,

超快激光超高真空扫描探针显微镜系统研制成功并推广

  高精尖科学仪器的获得是基础前沿科学探索研究及新发现的最重要因素之一。过去一些年里,我国在超高真空-分子束外延及其相关装备的研制方面与发达国家存在着巨大差距,成为我国相关领域科学研究、应用开发水平、重大原创性科研成果产生的重要瓶颈和掣肘。  作为研究低维材料和表面科学的重要工具,扫描隧道显微镜(S

追随诺贝尔足迹——2017年北京市电子显微学年会在京召开

  2017年度北京市电子显微学年会在北京天文馆召开。  分析测试百科网讯2017年12月19日,2017年度北京市电子显微学年会在北京天文馆召开,本次会议年会由北京市电镜学会、北京理化分析测试技术学会主办,旨在推动北京及周边地区广大电子显微学的学术及技术水平,促进电子显微学工作者在材料科学,生命科