自闭症或因父亲基因突变非编码区DNA结构变体潜藏祸端
《科学》杂志官网近日消息称,一项探索非编码DNA的新研究发现,调节基因活性区域的改变也可能导致自闭症,令人惊讶的是,这些变化倾向于从非自闭症的父亲那里继承而来。 过去十年中,研究人员已经发现了数百种可能影响大脑发育,从而增加自闭症风险的基因变异,但这些变异主要来自直接编码蛋白质的DNA中。此外,科学家一直试图在患者个体基因组中发现如何自发产生突变,而非从父母中寻找遗传突变。 论文作者、加利福尼亚大学遗传学家乔纳森·赛博特说:“基因组中只有2%由蛋白质编码基因组成,那些被称为‘垃圾’DNA的非编码部分,迄今在自闭症研究中一直被忽视。” 赛博特团队对能调节基因表达的非编码DNA部分特别感兴趣,他们研究了来自829个家庭的全基因组序列,包括自闭症个体、其没有患自闭症的兄弟姐妹和他们的父母。 评估个体非编码区DNA碱基变化带来的影响非常困难,因此,研究团队选择了所谓的大序列DNA结构变体作为考察对象。每个人在其基因组中仅有数......阅读全文
Nature:复杂生命难道不需要非编码DNA?
非编码DNA仅占据丝叶狸藻基因组3%的组成成分,这是否证明了对于复杂生命来说,非编码DNA并不需要呢? 自从科学家们首次发现超过95%的人类基因组是由非编码元件组成以来(非编码元件是指不会编码任何特殊蛋白质的 DNA 片段),他们就一直致力于了解这种所谓的“垃圾” DNA 的作用。在过
人造碱基能像天然碱基参与DNA复制
据物理学家组织网近日报道,新加坡科学家在最新一期《德国应用化学国际版》期刊上发表论文称,他们开发出一种遗传代码扩增技术,并合成出两种能够配对的人造碱基。通过X射线结晶技术分析表明,人造碱基对拥有与天然碱基对几乎完全相同的结构特征。使用新碱基对可以合成全新DNA片段,更好地检测病毒感染情况。
非编码DNA可用于开发癌症特异性疫苗
癌症疫苗,是科学家们五十多年来一直潜心研究的疑难课题,但直到最近的一项研究才得以证明这种疫苗是有效的。 近日,加拿大蒙特利尔大学免疫和癌症研究所(IRIC)的一个研究团队证明了癌症疫苗可以起作用。不仅如此,它还可以成为一种非常有效、非侵入性以及低成本的抗癌工具。这项研究刚发表在《Science
互补碱基的DNA和RNA的主要碱基的差别
胸腺嘧啶是DNA的主要嘧啶碱,在RNA中极少见;相反,尿嘧啶是RNA的主要嘧啶碱,在DNA中则是稀有的。在DNA分子结构中,由于碱基之间的氢键具有固定的数目和DNA两条链之间的距离保持不变,使得碱基配对必须遵循一定的规律,这就是Adenine(A,腺嘌呤)一定与Thymine(T,胸腺嘧啶)配对,G
Nature子刊:长非编码RNA可模拟DNA起作用
长期以来,人们一直认为基因组的大部分区域属于“禁飞区”。这些区域不编码任何蛋白,因此细胞的基因读取机器很少接近。然而近年来科学家们发现,许多非编码序列其实能够转录成RNA,Gas5就是其中之一。 GAS5是一段基因间的长非编码RNA(lincRNA),它来自于非编码的“垃圾DNA”或“基因组的
含8个碱基的DNA首次合成
地球生命的DNA包含4个碱基,现在,美国科学家将生命“字母表”的数量增加了一倍,首次合成出包含8个碱基的DNA。实验表明,合成DNA似乎能像天然DNA一样存储和转录信息。发表于《科学》杂志的最新研究成果表明,宇宙中或许存在其他生命形式,这对于外星生命搜寻非常重要。 本研究中,应用分子进化基金会
DNA碱基序列决定其光敏性
DNA分子在所有生命形态中扮演着遗传信息载体的角色,对紫外光的修改具有高度的抵抗性,但要理解其光稳定性的机制还存在一些令人费解的问题,一个重要方面是构成DNA分子的4种碱基之间的相互作用。德国基尔大学的研究人员成功地证明,DNA链因其碱基序列而有不同的光敏感性。相关研究结果刊登在最近出版的《科学》(
人造碱基能像天然DNA那样连接
美国印第安纳大学和应用分子进化基金会等机构科学家证明,他们造出的两种人造DNA“字母”Z和P,能像天然DNA那样组合连接在一起,将来有望把这两个新成员纳入到活细胞中。相关论文发表在最近的《美国化学协会会刊》(JACS)上。 合成生物学家一直在竞相研究遗传基本单位的人造版。美国应用分子进化基金
DNA和RNA的主要碱基区别
DNA和RNA的主要碱基略有不同,其重要区别是:胸腺嘧啶是DNA的主要嘧啶碱,在RNA中极少见;
DNA和RNA的主要碱基区别
DNA和RNA的主要碱基略有不同,其重要区别是:胸腺嘧啶是DNA的主要嘧啶碱,在RNA中极少见;
新发现!非编码DNA突变也可引发癌症-|-Nature子刊
基因与癌症的关系远比人类已了解的更加复杂。近日,美国科学家在一项新研究中鉴定出了近200个在不同的癌症中发挥作用的非编码DNA突变。 image.png 图片来源:Nature Genetics(doi:10.1038/s41588-018-0091-2) 在人类基因组中,有9
新发现!非编码DNA突变也可引发癌症-|-Nature子刊
基因与癌症的关系远比人类已了解的更加复杂。近日,美国科学家在一项新研究中鉴定出了近200个在不同的癌症中发挥作用的非编码DNA突变。 图片来源:Nature Genetics(doi:10.1038/s41588-018-0091-2) 在人类基因组中,有98%的信息是看似无用的“垃
“垃圾DNA”或是编码DNA的“保镖”
"垃圾DNA"的概念源自上世纪70年代,用来形容基因组中不是编码蛋白质的DNA序列,在学术上被称为非编码DNA序列。 非编码DNA"开关说"究竟是个啥? 科学家们发现,人类基因组中包含多达400万个基因开关和功能调节因子,它们的载体便是"垃圾DNA"。这强烈地冲击了"DNA序列=生物性
“垃圾DNA”或是编码DNA的“卫士”
“垃圾DNA”的概念是在上世纪70年代提出来的,用来形容那些基因组中不是编码蛋白质的DNA序列,而在学术上被称为非编码DNA序列。 由于当时的科学家普遍认为有生物学意义的蛋白质才是决定生物性状的关键,而且也没有一种好的理论和技术手段来解释这些“垃圾”存在的原因,于是“垃圾DNA”这一观念便形
DNA碱基中产生靶向变化的碱基编辑器-诱导广泛的脱靶
在一项新的研究中,来自美国麻省总医院、哈佛医学院和哈佛大学陈曾熙公共卫生学院的研究人员报道近期开发的几种在单个DNA碱基中产生靶向变化的碱基编辑器能够在RNA中诱导广泛的脱靶效应。他们还描述了对碱基编辑器变体进行基因改造可显著降低RNA编辑的发生率,这同时也会增加在靶DNA编辑的精确度。相关研究
DNA碱基家族迎新成员-甲基腺嘌呤碱基成新表观遗传标记
西班牙科学家在最新出版的《细胞》杂志上撰文指出,或许存在着第六种碱基——甲基腺嘌呤(mA),其主要作用是确定表观基因组的性质,并因此在细胞的生命过程中发挥重要作用。 脱氧核糖核酸(DNA)是遗传物质的主要组成成分,一般认为,它由A(腺嘌呤)、C(胞嘧啶)、G(鸟嘌呤)和T(胸腺嘧啶)四种碱基结
非编码区的作用
非编码区虽然不能编码蛋白质,但对于遗传信息表达是不可缺少的。在它上面有调控遗传信息表达的核苷酸序列,是有遗传效应的。比如RNA聚合酶结合位点。非编码区对目的基因是不可缺少的。非编码区上有与RNA聚合酶的结合位点,具有调控作用。基因非编码区的碱基的插入、缺失和替代也属于基因突变事件,尽管大多数的研究是
非编码区的定义
基因是由成千上万个核苷酸对组成。组成基因的核苷酸序列可以分为不同区段。在基因表达的过程中,不同区段所起的作用不同。能够转录为相应信使RNA,进而指导蛋白质合成(也就是能编码蛋白质)的区段叫做编码区。不能编码蛋白质的区段叫做非编码区。非编码区位于编码区前后,同属于一个基因,控制基因的表达和强弱 。
Nature子刊:DNA碱基编辑新方法
10月,国际知名学术期刊《自然-方法(Nature Methods)》在线发表了中国科学院上海生命科学研究院/上海交通大学医学院健康科学研究所常兴研究组题为“Targeted AID -mediated mutagenesis (TAM) enablesefficient genomic diver
Nature子刊:DNA碱基编辑新方法
10月,国际知名学术期刊《自然-方法(Nature Methods)》在线发表了中国科学院上海生命科学研究院/上海交通大学医学院健康科学研究所常兴研究组题为“Targeted AID -mediated mutagenesis (TAM) enablesefficient genomic div
组成DNA的四种碱基是什么?
组成DNA的四种碱基是腺嘌呤(A)、胞嘧啶(C)、鸟嘌呤(G)和胸腺嘧啶(T)。
DNA碱基编辑:基因编辑工具“升级版”
美国哈佛大学14日宣布,将授予光束疗法(Beam Therapeutics,下称BT)公司全球ZL许可,对可用于治疗人类疾病的一套革命性DNA碱基编辑技术进行开发和商业化。 BT公司同日宣布,已经筹集了高达8700万美元由F-Prime资本和ARCH风投牵头的A轮融资。BT公司由基因编辑技术领
DNA分子杂交技术的原理碱基互补配对
怎么看出来是否杂交上,这个是要在探针上做标记(标记可以有很多种,生物的、荧光的、放射性的等等),杂交后是要洗脱的,只有这种特异性的杂交才被保留下来,再通过检测探针上的标记来看出是否杂交上。比如上面的“钥匙”,就像你用一串的“钥匙”去试,但你可以先在要的那个“钥匙”上做个标记,你不需要认识“钥匙”
新DNA测序方法每秒识别660亿碱基
美国国家标准与技术研究所(NIST)模拟了一个新型快速测序概念:通过将DNA从超薄的石墨片层结构的孔洞中拉动,通过测量石墨孔洞边缘产生的电位变化,从而实现高速、高精度、高效率的DNA测序,该方法每秒可识别660亿个碱基,准确度为90%且无假阳性。 DNA测序经历了Sanger测序、二代测序(高通
DNA碱基编辑:基因编辑工具“升级版”
美国哈佛大学14日宣布,将授予光束疗法(Beam Therapeutics,下称BT)公司全球ZL许可,对可用于治疗人类疾病的一套革命性DNA碱基编辑技术进行开发和商业化。 BT公司同日宣布,已经筹集了高达8700万美元由F-Prime资本和ARCH风投牵头的A轮融资。BT公司由基因编辑技
Cell惊人发现:谁说非编码RNA不编码?
来自德克萨斯大学西南医学中心的Eric Olson和同事们在分析梳理肌肉特异性的长链非编码RNAs(lncRNAs)以了解它们的功能时,发现了一种在骨骼肌中特异性表达的lncRNA。尽管这一RNA以往被归类为是非编码RNA,它的序列中包含的一小段却看上去好像一个编码区域。这一研究发现发布在《细胞
非编码序列的概念
中文名称非编码序列英文名称non-coding sequence定 义基因中不具有编码功能的序列。如真核生物基因的内含子、启动子等。应用学科生物化学与分子生物学(一级学科),基因表达与调控(二级学科)
非编码序列的定义
中文名称非编码序列英文名称non-coding sequence定 义基因中不具有编码功能的序列。如真核生物基因的内含子、启动子等。应用学科生物化学与分子生物学(一级学科),基因表达与调控(二级学科)
简述非编码RNA的成熟
多数生物体中的非编码基因(ncRNA)被转录为需要进一步加工的前体。核糖体RNA(rRNA)通常被转录为含有一个或多个rRNA的前体rRNA,前体rRNA后来在特定位点被大约150种不同的snoRNA切割和修饰。转移RNA(tRNA)的5'和3'端序列分别被RNase P和tRN
首个酶法检测DNA中dU碱基技术诞生
单碱基水平精确定位dU在DNA乃至基因组位置示意图 迄今为止,人类还无法从单个碱基分辨率水平上检测到脱氧尿嘧啶(dU),这成为DNA序列检测的盲区和瓶颈之一,严重阻碍了对dU功能的认知和对DNA遗传密码的理解。