相对论激光驱动的大能量相干太赫兹辐射新进展
太赫兹(THz)辐射位于中红外和微波辐射之间,由于其单光子能量低和谱“指纹性”等独特优势,在材料科学、生物医疗和国防安全等领域具有重要应用。然而大能量太赫兹辐射源的缺乏是限制太赫兹科学发展的最关键瓶颈问题之一。等离子体能够承受任意光强的泵浦,可以克服光整流等传统太赫兹产生方法中光学元件的损伤问题。目前国际上基于激光-等离子体相互作用的太赫兹辐射研究主要集中在双色激光泵浦空气光丝方案,由于等离子体对激光的散焦效应,光丝内光强被钳制在1015-16W/cm2以下。 超强激光的峰值功率可达百太瓦(1012W)甚至拍瓦(1015W)水平,聚焦光强超过1018W/cm2,进入了相对论范畴(电子可被光场加速至接近光速)。为了充分发挥相对论激光的优势,中国科学院物理研究所/北京凝聚态物理国家实验室(筹)光物理重点实验室L05组的廖国前博士、李玉同研究员和上海交通大学张杰院士、盛政明教授等人组成的研究团队,对相对论激光-固体靶相互作用产生太赫......阅读全文
太赫兹双层超材料中的相干完美吸收机制
近日,微太中心太赫兹物理团队及其合作者在《应用物理快报》(Applied Physics Letters)上发表题为《超薄双层超材料在反对称模式激发下的选择性相干完美吸收(”Selective coherentperfect absorption of subradiant mode in
太赫兹光谱技术简单介绍及应用详解
1、太赫兹介绍 太赫兹(THz)辐射通常指的是频率在0.1THz一10THz(波长在30m~3mm)之间的电磁波,其波段在微波和红外光之问,属于远红外波段.有着丰富的物理和化学信息。同时,THz辐射的优点决定了它在很多方面可以成为傅立叶变换红外光谱技术和x射线技术的互补技术,
太赫兹时域光谱与频域光谱研究综述(四)
除此之外, 还有量子级联激光器、 微波倍频、 气体激光等方法用来产生窄带连续波太赫兹辐射。 表5总结了不同的太赫兹连续波发射源的相关参数对比。表5 太赫兹连续波发射源的比较Table 5 Comparison of terahertz continuous-wave emission sources
太赫兹光谱技术简单介绍及应用详解
1、太赫兹介绍 太赫兹(THz)辐射通常指的是频率在0.1THz一10THz(波长在30m~3mm)之间的电磁波,其波段在微波和红外光之问,属于远红外波段.有着丰富的物理和化学信息。同时,THz辐射的优点决定了它在很多方面可以成为傅立叶变换红外光谱技术和x射线技术的互补技术,使THz电磁波
集成太赫兹收发器在美问世
据美国物理学家组织网6月30日(北京时间)报道,美国科研人员开发出了首个集成太赫兹(THz)固态收发器,新设备比目前使用的太赫兹波设备更小,功能更强大。相关研究成果发表在最新一期的《自然·光子学》杂志上。 太赫兹技术是近年来十分热门的一个研究领域,2004年被评为影响世界未
半导体研究所成功推出系列太赫兹量子级联激光器产品
近年来,太赫兹技术发展迅速,应用越来越广泛,是当前的热门研究领域。由于太赫兹量子级联激光器是产生太赫兹辐射的重要器件,因此科学家开始钻研太赫兹量子级联激光器的研究中,而就在近日,我国太赫兹量子级联激光器领域有了重大进展,半导体研究所成功研制出系列太赫兹量子级联激光器产品。 中国科学
精密测量院在液体太赫兹波产生机制理论研究方面获进展
太赫兹波在通讯和成像等方面颇具应用价值。强场超快激光与物质非线性相互作用是产生太赫兹波的重要方式之一。等离子体、气体、晶体等太赫兹产生介质相关的实验与理论研究较为充分。然而,液体水是很强的太赫兹波吸收介质,尚未有其产生太赫兹波的报道。2017年,实验发现,液体薄膜厚度或液体束直径降到微米量级时,太赫
太赫兹波与太赫兹技术
太赫兹波是指频率介于0.1~10THz之间的电磁波,其波长范围为 0.03~3 mm。太赫兹波在电磁波谱中的位置位于微波和红外辐射之间,故对其研究手段由电子学理论逐渐过渡为光子学理论。20世纪90年代以前,人们对太赫兹波的认识非常有限。近年来,随着激光技术、量子阱技术和半导体技术的发展,为太赫兹脉冲
毫米波与太赫兹技术
今日推荐文章作者为东南大学毫米波国家重点实验室主任、IEEE Fellow 著名毫米波专家洪伟教授,本文选自《毫米波与太赫兹技术》,发表于《中国科学: 信息科学》2016 年第46卷第8 期——《信息科学与技术若干前沿问题评述专刊》,射频百花潭配图。引言随着对电磁波谱的不断探索, 人类对电子学和光学
太赫兹量子级联激光器系列产品成功制备
中国科学院半导体研究所半导体材料科学重点实验室、低维半导体材料与器件北京市重点实验室,在科技部、国家自然科学基金委及中科院等项目的支持下,经过努力探索,制备成功太赫兹量子级联激光器系列产品。 太赫兹(THz)量子级联激光器是一种通过在半导体异质结构材料的导带中形成电子的受激光学跃迁而产生相干
太赫兹
太赫兹(Tera Hertz,THz)是波动频率单位之一,又称为太赫,或太拉赫兹。等于1,000,000,000,000Hz,通常用于表示电磁波频率。太赫兹是一种新的、有很多独特优点的辐射源;太赫兹技术是一个非常重要的交叉前沿领域,给技术创新、国民经济发展和国家安全提供了一个非常诱人的机遇。历史早期
太赫兹时域光谱与频域光谱研究综述(二)
比较光电导和光整流这两种产生太赫兹脉冲的机制可知: 用光电导天线辐射的太赫兹脉冲能量通常要比用光整流效应所产生的太赫兹脉冲的能量强。 这是因为光整流效应产生的太赫兹波的能量仅仅来源于入射的激光脉冲能量, 而光电导天线辐射的太赫兹波能量则主要来自外加的偏置电场, 如果要想获得能量较强的太赫
实现太赫兹时钟记录飞秒相对论电子束时间信息
超快电子衍射属于泵浦-探测技术:首先由飞秒激光(泵浦)激发样品的动力学过程,随后利用电子束(探测)去记录某一时刻原子的位置信息;进一步改变电子束与激光的延时分别记录不同延时的原子位置信息则最终可将不同时刻的原子信息结合起来形成原子电影,完整再现原子尺度超快动力学的全过程。类似于x光自由电子激光,超快
德国标准计量机构填补太赫兹辐射“计量缺口”
太赫兹辐射(Terahertz radiation)在计量学(度量衡学)方面一直是一个空白,人称“度量衡缺口”,不过最近德国标准计量机构(PTB)宣布现在可以填补这个缺口了。这是世界第一次,通过测量输出功率来将一个商用太赫兹激光器追溯到国际单位制(缩写为SI,取自法文Systeme Inte
太赫兹相干反斯托克斯拉曼散射显微镜
太赫兹(THz)振动模式被认为存在于生物大分子中,在阐明其相应的生物功能方面具有重要的意义。然而,要观察这些生物大分子的低频振动模式是有挑战性的,尤其是在生物组织中。在THz区域缺乏一种可靠的高分辨率振动成像方法。所以,振动光谱成像在生物医学研究中具有重要的应用价值。然而,振动成像在太赫兹区域(
软X射线自由电子激光装置实验研究取得新进展
近日,中国科学院上海高等研究院、上海应用物理研究所自由电子激光团队,在外种子自由电子激光研究方面取得重要进展,理论提出了一种相干能量调制的自放大机制,并基于上海软X射线自由电子激光装置(SXFEL)完成实验验证。研究表明,这一新机制可降低外种子自由电子激光对外种子激光的功率需求,解决了外种子自由
基于光学及光子学的太赫兹(THz)辐射源
太赫兹波(Tera-Hertz Wave,频率在0.1—10THz范围)是光子学技术与电子学技术、宏观与微观的过渡区域,是一个具有科学研究价值但尚未开发的电磁辐射区域。如何有效的产生高功率(高能量)、高效率且能在室温下稳定运转、宽带可调的THz辐射源,已经成为科研工作者追求的目标。根据THz辐射
太赫兹时域光谱技术原理分析和应用
太赫兹时域光谱技术是最新的电磁波谱技术。作为近年来颇受关注的一个技术领域,太赫兹技术在很多基础研究领域、工业应用领域、医学领域、军事领域及生物领域中有重要的应用前景。 电磁波谱技术作为人类认识世界的工具,扩展了人们观察世界的能力。人眼借助于可见光可以欣赏五颜六色的世界,利用付利叶变换红外光
暗态下的非线性:极高效率的宽谱太赫兹产生
导读超材料是通过设计亚波长结构单元的几何形状与排列,实现新奇、特奇性质的复合材料。早在1990年John B. Pendry提出使用亚波长开口谐振环实现负磁导率的结构单元时,就提到该结构具有独特的非线性特征[1]。此后,关于超材料的非线性特性的研究在光波段被广泛研究报道。但是,这些基于金属单元的超材
太赫兹量子级联激光器功率达到1瓦特
据物理学家组织网10月31日(北京时间)报道,奥地利维也纳技术大学的一组研究人员制造出一种新型量子级联激光器,成功输出了1瓦特的太赫兹辐射,打破了此前由美国麻省理工学院所保持的0.25瓦特的世界纪录,成为目前世界上功率最大的太赫兹量子级联激光器。 太赫兹射线,是波长介于微波与红外之间的一种
太赫兹波的应用
太赫兹(THz)波是介于微波和红外之间的一种相干电磁辐射,是人类目前尚未完全开发的电磁波谱“空隙区”。由于其频率范围处于电子学和光子学的交叉区域,太赫兹波的理论研究处在经典理论和量子跃迁理论的过渡区,其性质表现出一系列不同于其他电磁辐射的特殊性,从而具有许多方面不同的应用。主要应用在光谱、成像和通信
太赫兹应用
太赫兹成像技术和太赫兹波谱技术由此构成了太赫兹应用的两个主要关键技术。同时,由于太赫兹能量很小,不会对物质产生破坏作用,所以与X射线相比更具有优势。THz时域光谱技术目前已经开始商业化运作,世界范围内已经有多家企业开始生产商用THz时域光谱仪,主要是中国,美国,欧洲和日本的厂家。THz时域光谱技术的
太赫兹特点
太赫兹是一种新的、有很多独特优点的辐射源;太赫兹技术是一个非常重要的交叉前沿领域,给技术创新、国民经济发展和国家安全提供了一个非常诱人的机遇。它之所以能够引起人们广泛的关注、有如此之多的应用,首先是因为物质的太赫兹光谱(包括透射谱和反射谱)包含着非常丰富的物理和化学信息,所以研究物质在该波段的光谱对
太赫兹通信
短亦有短的好,开辟战术通信新领域。在无线通信发展百余年后的今天,军事通信领域500MHz~5GHz频段资源已日趋稀缺,未来量子通信技术虽值得憧憬,但目前仍有些遥不可及。而太赫兹这一曾被“遗忘”的波段,集成了微波通信与光通信的优点,具有传输速率高、容量大、方向性强、安全性高及穿透性好等诸多特性,在军事
太赫兹技术
太赫兹辐射是0.1~10THz的电磁辐射, 从频率上看, 在无线电波和光波, 毫米波和红外线之间; 从能量上看, 在电子和光子之间· 在电磁频谱上,太赫兹波段两侧的红外和微波技术已经非常成熟,但是太赫兹技术基本上还是一个空白,其原因是在此频段上,既不完全适合用光学理论来处理,也不完全适合微波的理论来
太赫兹简介
THz波(太赫兹波)或成为THz射线(太赫兹射线)是从上个世纪80年代中后期,才被正式命名的,在此以前科学家们将统称为远红外射线。太赫兹波是指频率在0.1THz到10THz范围的电磁波,波长大概在0.03到3mm范围,介于微波与红外之间。实际上,早在一百年前,就有科学工作者涉及过这一波段。在1896
太赫兹成像
远距离穿墙术,铸就反恐作战新利器。如果问一下驻伊美军最怕的是什么,那答案肯定是路边炸弹,防不胜防的路边炸弹,成了驻伊美军不寒而栗的“头号杀手”,以至于让美国海军陆战队司令迈克尔·哈吉认为:“这种相对低级的武器将成为未来战争的一个标志。”在美军撤离伊拉克之前路边炸弹造成的伤亡一度不绝于耳。与此同时,不
太赫兹芯片
太赫兹芯片是一种全新的微芯片,是一种信号放大器,运行速度达到了1太赫兹,创下了最新的吉尼斯世界纪录。2018年4月23日,由中国电科13所研制的首款国产太赫兹成像芯片在首届数字中国建设峰会上正式发布。研发历史2014年11月,诺思罗普-格鲁曼公司芯片创造了新的吉尼斯世界纪录研发出了太赫兹芯片,能够达
太赫兹历史
太赫兹(Tera Hertz,THz)是波动频率单位之一,又称为太赫,或太拉赫兹。等于1,000,000,000,000Hz,通常用于表示电磁波频率。太赫兹是一种新的、有很多独特优点的辐射源;太赫兹技术是一个非常重要的交叉前沿领域,给技术创新、国民经济发展和国家安全提供了一个非常诱人的机遇。[1]
太赫兹特点
特点编辑人们关注THz技术的原因是THz射线普遍存在,是人们认识自然界的有效线索和工具。但是相对于其他波段的电磁波比如红外和微波,对它的认识和应用非常匮乏。其次,THz射线有它自身的特点。THz 脉冲的典型脉宽在皮秒量级,不但可以方便地进行时间分辨的研究,而且通过取样测量技术,能够有效地抑制远红