理海大学利用太赫兹半导体激光器输出创纪录功率的信号

从左到右:研究人员理海(Lehigh)大学电子与计算机工程系研究生JiChen,LiangGao和YuanJin在理海大学Sinclair大楼的SushilKumar的太赫兹光子实验室工作。图片来源:Sushil Kumar, 理海大学将光嵌入强烈的单色辐射激光的技术,在五十多年来,已经彻底的改变了我们的生活与工作方式。它的许多应用包括超快及高容量数据通信、制造业、外科手术、条形码扫描器、打印机、自动驾驶技术和惊艳的激光显示器。激光在不同科学分支都需要的原子和分子光谱中有着重要的应用,而在化学物质和生物分子的检测分析中,激光技术也同样起着重要作用。激光可以根据其在电磁波谱内的波长进行分类,可见光激光器——比如激光笔——只是其中的一小部分应用。红外线激光器借助光纤可被用于进行光通信。紫外线激光可用于眼科手术。除此之外还有太赫兹激光器,这也是理海大学电子和计算机工程系副教授SushilKumar研究小组正在研究的对象。在电磁波谱中,......阅读全文

太赫兹量子级联激光器实现激射

中科院上海技术物理研究所科研人员采用分子束外延技术和半导体微纳加工平台,自主完成了太赫兹量子级联激光器的结构设计、材料生长和器件制备,成功实现太赫兹量子级联激光器激射。这标志着我国科学家依靠自主创新在太赫兹量子级联激光器领域进入世界前列。     太赫兹量子级联激光器(THz-QCL)是太赫

超材料制成高定向太赫兹激光器

美国哈佛大学和英国利兹大学的一个联合研究小组最近演示了一种新型www.caigou.com.cn/c203513太赫兹半导体激光器,其发射的太赫兹光波准直性能与传统太赫兹光源相比显著改善。该激光器的研发成功,为太赫兹科技的应用打开了更广阔的领域。哈佛已经为此提交了一系列ZL申请。这一进展发布在8月8

超材料制成高定向太赫兹激光器

  美国哈佛大学和英国利兹大学的一个联合研究小组最近演示了一种新型太赫兹半导体激光器,其发射的太赫兹光波准直性能与传统太赫兹光源相比显著改善。该激光器的研发成功,为太赫兹科技的应用打开了更广阔的领域。哈佛已经为此提交了一系列ZL申请。这一进展发布在8月8日的《自然·材料》杂志上。

超材料制成高定向太赫兹激光器

美国哈佛大学和英国利兹大学的一个联合研究小组最近演示了一种新型太赫兹半导体激光器,其发射的太赫兹光波准直性能与传统太赫兹光源相比显著改善。该激光器的研发成功,为太赫兹科技的应用打开了更广阔的领域。哈佛已经为此提交了一系列ZL申请。这一进展发布在8月8日的《自然·材料》杂志上。      新型太赫

新型太赫兹半导体激光器问世

  据加州大学洛杉矶分校官网报道,该校科研人员利用新方法制造出太赫兹频率下工作的半导体激光器。这一突破或将带来可用于太空探索、军事和执法等领域的新型强大激光器。   在电磁波谱中,太赫兹的频率范围位于微波和红外线之间。太赫兹波可以在不损伤被检测物质的前提下对塑料、服装、半导体和艺术品等进行材料分析,

太赫兹量子级联激光器实现激射

  中科院上海技术物理研究所科研人员采用分子束外延技术和半导体微纳加工平台,自主完成了太赫兹量子级联激光器的结构设计、材料生长和器件制备,成功实现太赫兹量子级联激光器激射。这标志着我国科学家依靠自主创新在太赫兹量子级联激光器领域进入世界前列。  太赫兹量子级联激光器(THz-QCL)是太赫兹频段最具

太赫兹波与太赫兹技术

太赫兹波是指频率介于0.1~10THz之间的电磁波,其波长范围为 0.03~3 mm。太赫兹波在电磁波谱中的位置位于微波和红外辐射之间,故对其研究手段由电子学理论逐渐过渡为光子学理论。20世纪90年代以前,人们对太赫兹波的认识非常有限。近年来,随着激光技术、量子阱技术和半导体技术的发展,为太赫兹脉冲

太赫兹

太赫兹(Tera Hertz,THz)是波动频率单位之一,又称为太赫,或太拉赫兹。等于1,000,000,000,000Hz,通常用于表示电磁波频率。太赫兹是一种新的、有很多独特优点的辐射源;太赫兹技术是一个非常重要的交叉前沿领域,给技术创新、国民经济发展和国家安全提供了一个非常诱人的机遇。历史早期

太赫兹激光器有望实现大规模商业应用

就像那些劣质电影中和星际小说中的英雄选择武器时首先想到那样,都是激光武器,这种装置通过刺激原子或者分子激发出光子而产生相干电磁辐射束,但是这种技术改进的速度已经有点落伍了。如今,激光已经在工业上有了很频繁的应用,而且在家庭办公室里的文件文件打印方面以及在家庭影院播放电影等应用上都有所涉及。不仅如此,

太赫兹激光器有望实现大规模商业应用

            就像那些劣质电影中和星际小说中的英雄选择武器时首先想到那样,都是激光武器,这种装置通过刺激原子或者分子激发出光子而产生相干电磁辐射束,但是这种技术改进的速度已经有点落伍了。如今,激光已经在工业上有了很频繁的应用,而且在家庭办公室里的文件文件打印方面以及在家庭影院播放电影等应用

新型紧凑太赫兹激光器可在室温下工作

   美国科学家研制出一款紧凑型、在室温下工作、能广泛调谐的太赫兹激光器,是迄今性能最优异的太赫兹激光器,首次让太赫兹激光器可广泛应用于科技领域,有望在高带宽通信、超高分辨率成像、射电天文学等领域“大显身手”。  太赫兹频率范围位于电磁频谱(介于微波和红外线之间)的中间,可广泛应用于多个科术领域,但

太赫兹量子级联激光器功率达到1瓦特

  据物理学家组织网10月31日(北京时间)报道,奥地利维也纳技术大学的一组研究人员制造出一种新型量子级联激光器,成功输出了1瓦特的太赫兹辐射,打破了此前由美国麻省理工学院所保持的0.25瓦特的世界纪录,成为目前世界上功率最大的太赫兹量子级联激光器。   太赫兹射线,是波长介于微波与红外之间的一种

新设计将太赫兹激光器功率输出提升80%

            近日,来自桑迪亚国家实验室(Sandia National Laboratories)和多伦多大学(University of Toronto)的研究小组在微型太赫兹光源方面取得突破性进展,成功将太赫兹激光器功率输出提升80%,有望在工业成像及化学检测等领域获得广泛应用。目前

新型量子级联激光器输出1瓦特太赫兹辐射

 奥地利维也纳技术大学的一组研究人员制造出一种新型量子级联激光器,成功输出了1瓦特的太赫兹辐射,打破了此前由美国麻省理工学院所保持的0.25瓦特的世界纪录,成为目前世界上功率最大的太赫兹量子级联激光器。   太赫兹射线,是波长介于微波与红外之间的一种电磁辐射,由于物质的太赫兹光谱(包括透射谱和反

太赫兹量子级联激光器电子结构设计

未来更精确地对太赫兹QCL的能级结构及波函数分布进行模拟和设计,研究者发展了基于分区级数解法和非正基对角化方法的新型计算手段。在验证了这种新的数值算法的可靠性和普适性后,设计多种不同模式的太赫兹QCL激发区超晶格结构,用于指导实验制备相关器件及作为进一步理论研究的基础。  发展了精确求解电池下耦合多

太赫兹量子级联激光器系列产品成功制备

  中国科学院半导体研究所半导体材料科学重点实验室、低维半导体材料与器件北京市重点实验室,在科技部、国家自然科学基金委及中科院等项目的支持下,经过努力探索,制备成功太赫兹量子级联激光器系列产品。   太赫兹(THz)量子级联激光器是一种通过在半导体异质结构材料的导带中形成电子的受激光学跃迁而产生相干

太赫兹量子级联激光器电子结构设计

未来更精确地对太赫兹QCL的能级结构及波函数分布进行模拟和设计,研究者发展了基于分区级数解法和非正基对角化方法的新型计算手段。在验证了这种新的数值算法的可靠性和普适性后,设计多种不同模式的太赫兹QCL激发区超晶格结构,用于指导实验制备相关器件及作为进一步理论研究的基础。   发展了精确求解电池下

半导体所制备成功太赫兹量子级联激光器

中国科学院半导体研究所半导体材料科学重点实验室、低维半导体材料与器件北京市重点实验室,在科技部、国家自然科学基金委及中科院等项目的支持下,经过努力探索,制备成功太赫兹量子级联激光器和红外量子级联激光器(QCL)系列产品系列产品。     太赫兹(THz)量子级联激光器是一种通过在半导体异质结

太赫兹特点

太赫兹是一种新的、有很多独特优点的辐射源;太赫兹技术是一个非常重要的交叉前沿领域,给技术创新、国民经济发展和国家安全提供了一个非常诱人的机遇。它之所以能够引起人们广泛的关注、有如此之多的应用,首先是因为物质的太赫兹光谱(包括透射谱和反射谱)包含着非常丰富的物理和化学信息,所以研究物质在该波段的光谱对

太赫兹通信

短亦有短的好,开辟战术通信新领域。在无线通信发展百余年后的今天,军事通信领域500MHz~5GHz频段资源已日趋稀缺,未来量子通信技术虽值得憧憬,但目前仍有些遥不可及。而太赫兹这一曾被“遗忘”的波段,集成了微波通信与光通信的优点,具有传输速率高、容量大、方向性强、安全性高及穿透性好等诸多特性,在军事

太赫兹简介

THz波(太赫兹波)或成为THz射线(太赫兹射线)是从上个世纪80年代中后期,才被正式命名的,在此以前科学家们将统称为远红外射线。太赫兹波是指频率在0.1THz到10THz范围的电磁波,波长大概在0.03到3mm范围,介于微波与红外之间。实际上,早在一百年前,就有科学工作者涉及过这一波段。在1896

太赫兹成像

远距离穿墙术,铸就反恐作战新利器。如果问一下驻伊美军最怕的是什么,那答案肯定是路边炸弹,防不胜防的路边炸弹,成了驻伊美军不寒而栗的“头号杀手”,以至于让美国海军陆战队司令迈克尔·哈吉认为:“这种相对低级的武器将成为未来战争的一个标志。”在美军撤离伊拉克之前路边炸弹造成的伤亡一度不绝于耳。与此同时,不

太赫兹芯片

太赫兹芯片是一种全新的微芯片,是一种信号放大器,运行速度达到了1太赫兹,创下了最新的吉尼斯世界纪录。2018年4月23日,由中国电科13所研制的首款国产太赫兹成像芯片在首届数字中国建设峰会上正式发布。研发历史2014年11月,诺思罗普-格鲁曼公司芯片创造了新的吉尼斯世界纪录研发出了太赫兹芯片,能够达

太赫兹特点

特点编辑人们关注THz技术的原因是THz射线普遍存在,是人们认识自然界的有效线索和工具。但是相对于其他波段的电磁波比如红外和微波,对它的认识和应用非常匮乏。其次,THz射线有它自身的特点。THz 脉冲的典型脉宽在皮秒量级,不但可以方便地进行时间分辨的研究,而且通过取样测量技术,能够有效地抑制远红

太赫兹光谱

太赫兹波,又称远红外辐射波,具备非常卓越的特性。许多常见的材料和组织对于太赫兹波都是半透明的,并表现出“太赫兹特性”,使得利用太赫兹波鉴别和分析样品成为可能。太赫兹光谱技术具备非常广泛的应用前景,比如在聚合物多晶型研究、聚合物研发、无机化学、气体光谱、固态物理、半导体物理以及药品研发等相关领域都可以

太赫兹应用

太赫兹成像技术和太赫兹波谱技术由此构成了太赫兹应用的两个主要关键技术。同时,由于太赫兹能量很小,不会对物质产生破坏作用,所以与X射线相比更具有优势。THz时域光谱技术目前已经开始商业化运作,世界范围内已经有多家企业开始生产商用THz时域光谱仪,主要是中国,美国,欧洲和日本的厂家。THz时域光谱技术的

太赫兹雷达

高精度宽频带,让隐身兵器无所遁形。众所周知,雷达主要靠接收目标的反射信号来发现目标。如果目标表面能使雷达波被吸收或散射,就可大大减小被发现的概率,从而达到隐身的目的。因此,通常所说的隐身技术主要是靠形状、吸波涂层、形成等离子云吸收或改变雷达波的传播方向来实现隐身的。在隐身技术应用之后,常规的窄带微波

太赫兹技术

太赫兹辐射是0.1~10THz的电磁辐射, 从频率上看, 在无线电波和光波, 毫米波和红外线之间; 从能量上看, 在电子和光子之间· 在电磁频谱上,太赫兹波段两侧的红外和微波技术已经非常成熟,但是太赫兹技术基本上还是一个空白,其原因是在此频段上,既不完全适合用光学理论来处理,也不完全适合微波的理论来

太赫兹历史

太赫兹(Tera Hertz,THz)是波动频率单位之一,又称为太赫,或太拉赫兹。等于1,000,000,000,000Hz,通常用于表示电磁波频率。太赫兹是一种新的、有很多独特优点的辐射源;太赫兹技术是一个非常重要的交叉前沿领域,给技术创新、国民经济发展和国家安全提供了一个非常诱人的机遇。[1] 

美学者在太赫兹激光器研究实现重大突破

            利用激光器将光束转为强烈的单色辐射光,彻底改变了我们的生活及工作方式,已有超过五十年的历史。它的众多应用包括:超快且高通量的数据通信、制造业、外科手术、条形码扫描器、打印机、无人驾驶技术和激光投影显示器。激光还应用于原子和分子光谱学中,可用于各类科学分支和各类化学物质与生物分