微区成分的X射线能谱无标样定量分析简化模型
本文对作者建立的微区成分无标样定量分析法进行了简化,使原有的计算量大为减少。用简化模型对Cu-Si,FeS2,NaCl,GaAs试样和多元钢样原实验数据进行了定量计算,并与原模型多元程序计算结果进行比较。结果表明,这种简化是合理的。 ......阅读全文
多元氧化物成分的无标样x射线能谱定量分析
本文将多元合金成分的无标样x射线能谱定量分析方法推广到有固定化合价的氧化物成分的分析。对MgAl2O4、YAG(Y3Al5O12)、La2Ti2O7、YIC(Y3Fe5O12)、GGG(Gd3Ga5O12、Mn0.6Zn0.4Fe2O4和NaxWO3(x=0.68)等氧化物成分的分析,除了Na的误差
微区成分的X射线能谱无标样定量分析简化模型
本文对作者建立的微区成分无标样定量分析法进行了简化,使原有的计算量大为减少。用简化模型对Cu-Si,FeS2,NaCl,GaAs试样和多元钢样原实验数据进行了定量计算,并与原模型多元程序计算结果进行比较。结果表明,这种简化是合理的。
二元化合物成分的X射线能谱无标样定量分析
常规的X射线能谱无标样定量分析采用Russ法。最近吴自勤等人又提出X射线能谱无标样定量分析的直接法。本文仍采用直接法,但吸收了Russ法中的优点。用常规的ZAF修正中使用的物理公式,推出X射线能谱另一种无标样定量分析的方法,它更便于计算。对NaCl,NaI,KCl,AgI,ZnS和GaAs样品的实验
X射线能谱定量分析
随着探头制造技术水平的提高、电子学技术的发展,以及对脉冲处理技术和重叠峰处理方法的改进,能谱定量分析的精度得到不断提高。目前,对原子序数在11~30之间的常用元素,其分析精度大体上可以达到波长谱仪的水平。由于能谱定量分析的方法简单、操作方便,它既能进行大试样的平均成份分析,也能进行微粒、薄板、镀层、
X-射线能谱
X 射线能谱( Energy-dispersive X-ray spectroscopy, EDS)是微区成分分析最为常用的一种方法,其物理基础是基于样品的特征 X 射线。当样品原子内层电子被入射电子激发或电离时,会在内层电子处产生一个空缺,原子处于能量较高的激发状态,此时外层电子将向内层跃迁以填补
X射线荧光光谱仪无标样分析方法
对于以固体进样为主的X射线荧光分析技术,要获得一套高质量的固体标准样品有一定难度,限制了X射线荧光分析的应用范围。 而X射线荧光光谱无标样分析技术是20世纪90年代推出的新技术,其目的是不用标准样品也可以分析各种样品。它的基本思路是:由仪器制造商测量标准样品,储存强度和工作曲线,然后将这些数据
软骨钙化的X射线能谱半定量分析
软骨的钙化过程实质上是钙盐在软骨内沉积的积累过程。尽管人们一直关注这个问题,但并未完全清楚。本文利用透射电镜观察了钙盐在软骨细胞内外沉积的部位和形态,利用 X 射线能谱仪对沉积钙盐的 Ca- P 强度、浓度和摩尔数进行了半定量分析。
硫化物X射线能谱定量分析探讨
711-F型能谱仪对常见硫化物(黄铁矿、磁黄铁矿、方铅矿、闪锌矿等)元素定量分析的条件试验结果表明,一定要选择好仪器的最佳试验条件;保证分析样品的质量,排除影响元素定量分析精度的因素。经反复条件试验,获得硫化物的最佳试验测试参数:电压25kV、束流64μA、束斑0.125μm、计数率2300c/s、
不锈钢X射线能谱定量分析方法研究
配备X射线能谱仪的扫描电子显微镜不仅能够观察材料的微观形貌还可对微区成分进行分析,现已广泛应用于材料分析测试领域。提高能谱仪定量分析的准确度,是科学研究和工业生产的重要课题。本论文对能谱仪的物理基础、工作原理、定性分析、定量分析等方面进行了阐述,并围绕如何获得不锈钢标样定量分析的最佳工作条件以及提高
多相体系银焊条的X射线能谱定量分析
稀土银焊条属多相体系,它由低含量微细稀土氧化物弥散分布在银基体中所组成。文献[1][2]提出的多相体系样品电子探针定量分析法均由样品面扫描谱获得实验数据,对焊条中低含量的第二相元素,其峰强很低,实验误差大。因在银焊条中:基体对第二相各元素无荧光效应;基体对第二相各元素的质量吸收系数相近,第二相各元素
X射线能谱仪简介
能谱仪是利用X射线能谱分析法来对材料微区成分元素种类与含量分析的仪器,常常配合扫描电子显微镜与透射电子显微镜的使用。
软X射线能谱仪
本文描述了一个用于托卡马克杂质谱线精细测量的高分辨软X射线谱仪。谱仪采用Johann型弯晶衍射结构,以多丝正比室作探测器件。其测量范围为2—8keV(1—6),能量分辨为4.1eV(在6.4keV处)。多丝正比室采用阳极丝逐丝读出法,位置读出精度2mm。谱仪配有自动数据记录系统。
X射线机重过滤X射线能谱的测量
本文报道了用 NaI(Tl)闪烁谱仪对国产 F34-Ⅰ型 X 射线机的重过滤 X 射线能谱的测量和解谱方法,给出一组测量结果,并对测量结果进行了比较和讨论。
软X射线源上X射线能谱与X射线能量的测量
本文介绍了国内首次利用针孔透射光栅谱仪对金属等离子体Z箍缩X射线源能谱的测量结果及数据处理方法。同时用量热计对该源的单脉冲X射线能量进行了测量并讨论了其结果。
Si(Li)X射线能谱仪
Si(Li)x射线能谱仪于一九六八午首次应川在电子探针,成为一种x射线微分析的工具。此后,在能量分辨率、计数率和数据分析等方面作了许多改进,目前已经成为电子探针和扫描电镜的一种受欢迎的附件,甚至在透射电子显微镜上也得到应用。
X射线能谱仪应用范围
1、金属材料的相分析、成分分析和夹杂物形态成分的鉴定;2、高分子、陶瓷、混凝土、生物、矿物、纤维等无机或有机固体材料分析;3、可对固体材料的表面涂层、镀层进行分析,如:金属化膜表面镀层的检测;4、金银饰品、宝石首饰的鉴别,考古和文物鉴定,以及刑侦鉴定等领域;5、进行材料表面微区成分的定性和定量分析,
DPF脉冲X射线能谱测量
采用滤光法对DPF脉冲X射线源装置的X射线能谱进行了测量,取得了较好的结果,为辐射效应环境测量提供了一种手段。
X射线能谱定性分析
X射线能谱定性分析快速有效,是电子探针和扫描电镜分析必须的组成部分。用X射线能谱仪测量试样特征X射线全谱中各谱峰的能量值,计算机释谱得出试样的元素组成。X射线能谱定性分析要注意背景的判别、峰的位移、峰的重叠、逃逸峰、二倍峰、和峰和其他干扰峰等问题,以免导致错误的分析结果。(1)背景的判别在使用X射线
X射线能谱数据处理
本文提出运用FFT,对双路实测能谱信息在变换域中加以滤波修正,同时完成平滑及背底扣除。文中剖析了EDAX-7EMZL程序,并与诸元素特征峰及背底的谱分析相比较,获取滤波修正频窗。文中编制了双路能谱同时作滤波修正程序。试验表明:此法实现了数据压缩及零相位校正,增快了滤波速度,减小了相位滞移量,提高了分
高能脉冲X射线能谱测量
给出了高能脉冲X射线能谱测量的基本原理及实验结果.采用Monte-Carlo程序计算了高能光子在能谱仪中每个灵敏单元内的能量沉积,利用能谱仪测量了"强光Ⅰ号"加速器产生的高能脉冲X射线不同衰减程度下的强度,求解得到了具有时间分辨的高能脉冲X射线能谱,时间跨度57ns,时间步长5ns,光子的最高能量3
X射线能谱测量与模拟
1895年,德国科学家伦琴发现了X射线,开辟了一个崭新的、广阔的物理研究领域。其中,针对电子打靶产生的韧致辐射X射线的研究,是X射线研究领域的一个重要课题。本文在国内外针对X射线能谱测量与解析的基础上,利用高纯锗(HPGe)探测器使用直接测量法与间接测量法对钨靶X射线与钼靶X射线能谱进行了测量。工作
X射线能谱定量分析中超常误差产生原因的研究
X射线能谱定量分析的精度问题一直困扰着能谱生产厂家和使用单位.在某些情况下,用无标样法所测值的误差远大于10%,即存在着所谓的超常误差.因而不少分析人员对其定量分析结果持怀疑态度,认为X射线能谱只适合做定性和半定量分析.本文将对超常误差的产生原因作一...
簿膜X射线能谱定量分析准确度的探讨
本文通过在EM400T透射电镜上用一些标准成分的样品进行薄膜无标样成份分析实验,检验了EDAX9100能谱仪的分析准确度。在本试验所用的样品范围内,其准确度为:近邻元素同一X光线系分析相对误差为5~10%,非近邻元素不同线系分析相时误差较大,可达20~50%。试验证明在分析元素的质量吸收系数之差Δμ
X射线能谱定量分析初探可伐合金的EDX分析
可伐合金是能与玻璃、金属匹配封接的合金材料,在电池行业中用作封接材料。其化学组成对确保电池封接件的质量是至关重要的。我们用化学组成与待测试样相近的标准样。按下式求出待测试样中的Mn、Co、Ni的含量。C_i/C_j=I_i/I_j C_j=[I_i/I_j]·C_i式中 C_i—试样中欲测元素的含量
能谱和x射线荧光技术进行元素定性定量分析的区别
激发源不一样,能谱的激发源是电子束,X射线荧光自然是X射线,所以两者的检测深度不一样,能谱一般只能检测样品表面,而XRF可以穿透样品。测试环境不一样,能谱是配在电镜上的,所以只能在真空环境下测试,而XRF则真空和大气条件都可以。测量元素范围不同,能谱可以测试Be~U,XRF能测到Na就不错了(能量色
X射线能谱仪定量分析植物组织中的多种矿质元素
本文介绍一种用扫描电镜和X射线能谱仪定量分析植物组织中的Mg、Al、Si、P、S、Cl、K、Ca、Mn,Fe元素的方法。本方法样品前处理简单,分析速度快,费用低。
x射线能谱仪定量分析硫在植物器官中的分布
植物内某些器官中物质的含量能准确反映大气和土壤污染程度。本实验选用番石榴幼苗作为供试植物,按下表分组,进行人工污染,观察其抗S02污染性,并利用扫描电镜x射线能谱仪来分析植株各部份器官的含硫量以及其吸收SO2的机理,以便探索一个准确监测动植物体内部受污染程度的简易方法。
X射线能谱仪的原理介绍
在许多材料的研究与应用中,需要用到一些特殊的仪器来对各种材料从成分和结构等方面进行分析研究。 其中,X射线能谱仪(XPS)就是常用仪器之一。下面详细介绍一下X射线能谱仪的基本原理、结构、优缺点及应用。 X射线光电子能谱(XPS)也被称作化学分析用电子能谱(ESCA)。该方法
复杂X射线能谱构造方法研究
本文提出了基于最小二乘法的复杂X射线能谱构造方法,介绍了其构造原理,设计了由35~100kV加速电压条件下的14个X射线过滤谱组成的构造子谱组。目标能谱模拟构造结果表明,构造能谱与目标能谱总体的相对偏差基本控制在10%以内;影响其偏差的主要因素包括构造子谱数量与形态,目标能谱的非连续可微以及射线源特
X射线光电子能谱
X射线光电子能谱(X-ray photoelectron spectroscopy,XPS)技术也被称作用于化学分析的电子能谱(electron spectroscopy for chemical analysis,ESCA).XPS属表面分析法,它可以给出固体样品表面所含的元素种类、化学组成以及有