新型纸基生物电池由细菌供电

电池出现已有100多年,但时至今日,在某些偏远或资源有限的地区,这种我们惯用的日常用品却还属于奢侈品。而即将在美国化学学会第256届全国会议暨博览会上公布的一项最新成果——一种靠细菌发电的新型纸基生物电池,或许能改变这一状况,给这些地区带来低成本的新型能源。 这种新型电池是由美国纽约州立大学的一个研究团队开发的。研究人员在纸的表面印刷薄层金属和其他材料作为基板,然后把冻干的产电菌群放置在纸上,制成纸基生物电池。使用时,只需将水或者唾液涂抹在纸上,几分钟内,这些冻干细菌就会恢复活力,它们在为自己制造能量的同时,产生的电子会穿过细胞膜与外部电极接触,从而为电池供电。 由于纸张会透气,研究人员曾担心细菌产生的电子在到达电极前被氧气吸收,从而影响电池性能。但研究显示,氧气对电池性能的影响很小,因为细菌细胞紧密地附着在纸张纤维上,在氧气介入之前,纤维就已经迅速将电子转移到阳极了。 作为生物传感器材料,纸张具有独特的优势,柔韧性好......阅读全文

新型纸基生物电池由细菌供电

  电池出现已有100多年,但时至今日,在某些偏远或资源有限的地区,这种我们惯用的日常用品却还属于奢侈品。而即将在美国化学学会第256届全国会议暨博览会上公布的一项最新成果——一种靠细菌发电的新型纸基生物电池,或许能改变这一状况,给这些地区带来低成本的新型能源。  这种新型电池是由美国纽约州立大学的

纸基生物传感器

  纸基生物传感器正成为满足环境保护需求的医疗诊断传感器。  用于诊断的生物传感器  家庭可使用(Home-based)的生物传感器已经改变了社会对医疗诊断的看法。生物传感器是能够通过换能器将目标分析物的生物信息转化为定量信号的集成式分析装置。生物传感器的设计一般为一次性测试条,在现场进行快速、简单

纸基微流控

科罗拉多州立大学(Colorado State University)化学教授兼Henry集团领导人Charles Henry博士,将在会议上阐述用于人类临床试验和环境诊断的纸基微流控芯片的近期发展。纸基微流控器件的优势包括潜在的易用性、低成本和易处置性。“从普通沃特曼滤纸到复印纸,我们已经测试并使

可折叠纸基锂离子电池-能量密度提高14倍

折成Miura-ori型的可折叠电池,这种折叠方式使得电池的表面能量密度和电容均提高14倍。   据物理学家组织网10月9日(北京时间)报道,美国亚利桑那大学科学家开发出一种纸基锂离子电池,能做多次对折或折成 Miura-ori型(类似地图折法),由于折叠后变得更小,表面能量密度和电

纸电极让微生物燃料电池更廉价高效

  美国研究人员近日在《美国化学学会·能源通讯》杂志上报告说,他们开发出一种新技术,可用纸制造微生物燃料电池的电极,与过去的方法相比这能让微生物燃料电池更为廉价和高效。  微生物燃料电池是一种利用微生物来产生电能的装置,一个重要应用场景是废水处理,微生物在去除水中污染物的同时,还能产生电能。但目前所

细菌培养基

Preparation of LB Plate (Dr. Chastain)prepare LB plate with or without antibioticsBacterial Culture Media Recipes (WUGSC) M9 Plate Supplement (Gottsch

中国科大研制出生物合成的纤维素基绝缘纳米纸

随着人类对南极洲、月球和火星等极端环境探索的深入,不断出现的极端环境条件,包括强紫外线(UV)环境、原子氧(AO)和高低温交替环境等,已经成为今后探索的主要障碍。在这些极端环境下,材料的物理化学特性会发生变化,严重时甚至会导致重要设备和装置的损坏。在传统材料当中,金属和陶瓷本身具有出色的机械性能和对

“细菌造”纳米纸经得起极端环境考验

  4月18日,科技日报记者从中国科学技术大学获悉,该校俞书宏院士、管庆方副研究员等科研人员,利用合成云母和细菌纤维素,合成了一种具有优异机械和电绝缘性能,对极端条件具有良好耐受性的纳米纸张材料,该材料表现出优异的交替高温和低温耐受性、抗紫外线和原子氧特性。这项研究成果日前发表在《先进材料》上。  

薄膜印刷纸电池的应用

薄膜印刷纸电池技术是由张先昌发明的。该技术获得了由达沃斯国际经济论坛宣布的国际科技前沿奖。在国际印刷电子领域享有盛誉。薄膜印刷纸电池产品的特点是:软、轻、薄、动力和纽扣电池适宜,更环保。产品的特性使这种电池也被称为未来电池。这种纸电池是一次性使用的。我们的纸电池可以根据用户的要定制大小、厚度、形状,

生物光伏电池板-靠土壤细菌产能

  一种生物光伏电池板被安装在西班牙加泰罗尼亚高等建筑研究所(IAAC)Valldaura中心,它由一个能利用周围土壤中的细菌产生能量的电池组成。   土壤中的细菌依靠植物光合作用的副产品存活。这些细菌分解植物营养成分,向土壤中释放氢质子和电子。电子被“抓取”,进入配合微生物燃料电池使用的电路中。

细菌培养基配方

1、细菌培养基配方一 牛肉膏琼脂培养基牛肉膏0.3克 ,蛋白胨1.0克,氯化钠 0.5克,琼脂 1.5克,水 100毫升在烧杯内加水100毫升,放入牛肉膏、蛋白胨和氯化钠,用蜡笔在烧杯外作上记号后,放在火上加热。待烧杯内各组分溶解后,加入琼脂,不断搅拌以免粘底。等琼脂完全溶解后补足失水,用10%盐酸

条码化纸基芯片应用于即时检验

即时检验(POCT)技术在近些年得到了快速发展,被广泛应用于医学检验、食品安全和环境监测等领域,在POCT技术的发展历程中,纸基芯片扮演了十分重要的角色,纸基芯片具有检测速度快、操作简便、可便携、成本低廉等特点,完全契合POCT技术对即时性、便捷性和低成本的需求,在极大程度上推动了POCT的发展。然

旧电池的崛起——镍基电池

  随着工业改革步伐的加快,汽车行业面临着许多方面的调整,节能减排是最受到关注的,BASF化学公司就此在汽车电池上面做了相关研究,并发现镍氢电池的储能能力可以改善汽车的耗能,因此,旧型镍基电池将会重新崛起,让我们拭目以待。  BASF化学公司说,现在用在混合动力车上的普通电池性能

上海硅酸盐所研制出新型羟基磷灰石超长纳米线基生物纸

  羟基磷灰石是脊椎动物骨骼和牙齿的主要无机成分,具有优良的生物相容性和生物活性,在生物医学领域具有良好的应用前景。然而,由单一羟基磷灰石组成的材料通常脆性高,柔韧性差,难以加工成各种生物医学应用所需的特定形状。此外,在一些特定的生物医学应用中需要使用柔性生物材料。为此,设计合成具有良好柔韧性和优异

光合细菌培养基优化

  光合细菌(PSB)是地球上最早出现的原核生物,具有原始不产氧的光能合成体系,它的生态学研究始于十九世纪中叶,100多年来取得了许多成果。 在营养中以碳、氮、磷营养因素为主的基础培养基,使光合细菌具备生命活动的能源和建造有机体的物质基础。还需要一定量的镁、钙、钠及有关微量元素,以保证其生理代谢的正

细菌组合培养基配方

我做富集培养的配方,基本为无机铵盐0.2-0.3%,硫酸镁0.05%,磷酸氢二钾0.1%,酵母浸膏0.2%,根筛选不同的菌,可加0.005%的铁盐或亚铁盐,碳源根据实验要求选择萄或特定碳源(如石油),水自来水,不用加钙。

用细菌制造出高性能绝缘纳米纸

中国科学技术大学俞书宏院士团队研制出了一种高性能纤维素基纳米纸材料,其在极端条件下仍可保持优异的机械和电绝缘性能。相关成果日前发表于《先进材料》。复合纳米纸的的制备与结构示意图 中国科大供图随着人类对南极洲、月球和火星等极端环境探索的深入,不断出现的极端环境条件,包括强紫外线环境、原子氧和高低温交替

氟基电池,未来电池新希望

  开发高能量密度电池是电动汽车和智能电网等长续航和大规模储能体系的长期追求目标。锂金属氟基电池能够通过多电子转移和高电位的转换反应,具备实现高能量密度储能的潜质(理论上接近1000Wh/kg 和1800 Wh/L);相比分子转换型锂硫和锂氧电池,能够更好地规避由反应限域困难引发的正极活性物质损失和

钠基电池主要原理

钠离子电池中,钠离子可附着在肌醇上,而肌醇是一种常见的化合物,可从米糠或玉米加工过程中的液体副产物中提取。钠离子和肌醇的新结合显着改善钠基电池的离子循环,使离子能更加有效地从阴极移动穿过电解质到磷阳极,继而出现更强的电流。钠基和钾基电池面对的最大障碍之一是它们会更快地衰变和退化,且能量密度比锂离子电

​什么是钠基电池?

钠基电池是钠与一种叫做肌醇的化合物结合在一起的一种电池。2017年十月,由斯坦福大学的研究人员开发出来。这种新型电池里的钠与一种叫做肌醇的化合物结合在一起,这是一种在家用产品中常见的有机化合物,包括婴儿配方奶粉。正如钠的含量比锂要丰富得多,米糠醇很容易从米糠中提炼出来,也可以在玉米加工过程中产生的副

钠基电池主要原理

钠离子电池中,钠离子可附着在肌醇上,而肌醇是一种常见的化合物,可从米糠或玉米加工过程中的液体副产物中提取。钠离子和肌醇的新结合显着改善钠基电池的离子循环,使离子能更加有效地从阴极移动穿过电解质到磷阳极,继而出现更强的电流。钠基和钾基电池面对的最大障碍之一是它们会更快地衰变和退化,且能量密度比锂离子电

钠基电池主要原理

钠离子电池中,钠离子可附着在肌醇上,而肌醇是一种常见的化合物,可从米糠或玉米加工过程中的液体副产物中提取。钠离子和肌醇的新结合显着改善钠基电池的离子循环,使离子能更加有效地从阴极移动穿过电解质到磷阳极,继而出现更强的电流。钠基和钾基电池面对的最大障碍之一是它们会更快地衰变和退化,且能量密度比锂离子电

什么是钠基电池?

钠基电池是钠与一种叫做肌醇的化合物结合在一起的一种电池。2017年十月,由斯坦福大学的研究人员开发出来。这种新型电池里的钠与一种叫做肌醇的化合物结合在一起,这是一种在家用产品中常见的有机化合物,包括婴儿配方奶粉。正如钠的含量比锂要丰富得多,米糠醇很容易从米糠中提炼出来,也可以在玉米加工过程中产生的副

什么是钠基电池?

  钠基电池是钠与一种叫做肌醇的化合物结合在一起的一种电池。2017年十月,由斯坦福大学的研究人员开发出来。钠离子电池中,钠离子可附着在肌醇上,而肌醇是一种常见的化合物,可从米糠或玉米加工过程中的液体副产物中提取。钠离子和肌醇的新结合显著改善钠基电池的离子循环,使离子能更加有效地从阴极移动穿过电解质

什么是钠基电池?

钠基电池是钠与一种叫做肌醇的化合物结合在一起的一种电池。2017年十月,由斯坦福大学的研究人员开发出来。这种新型电池里的钠与一种叫做肌醇的化合物结合在一起,这是一种在家用产品中常见的有机化合物,包括婴儿配方奶粉。正如钠的含量比锂要丰富得多,米糠醇很容易从米糠中提炼出来,也可以在玉米加工过程中产生的副

兰州化物所柔性纸基集成器件研究取得进展

  柔性传感器可穿戴或植入人体,并可检测周围环境信息,在医疗健康领域受到广泛关注。然而,作为用电器件的传感器自身并不能独立工作,需要电源为其供电。平面型微型超级电容器(MSC)作为新型的微型电化学储能器件易与传感器或其它电子器件进行有效集成。一般的方法是将传感器与电源通过外接导线连接,但在柔性可穿戴

纸糊的太阳能电池问世

  形容一种东西不耐用、不结实时,人们常说它“像纸糊的”。日本一个研究小组却以木浆为原料,研发出一种新型太阳能电池板,这种“纸糊的”太阳能电池环保、廉价且超薄可弯曲,将来可能大有用武之地。   据日本《每日新闻》网站日前报道,为了保证透光率,通常太阳能电池板使用透明的玻璃或塑料。大阪大学产业科学研

细菌培养基的相关介绍

  牛肉膏琼脂培养基  牛肉膏0.3g ,蛋白胨1.0g,氯化钠0.5g,琼脂1.5g,水100ml  在烧杯内加水100ml,放入牛肉膏、蛋白胨和氯化钠,用蜡笔在烧杯外作上记号后,放在火上加热。待烧杯内各组分溶解后,加入琼脂,不断搅拌以免粘底。等琼脂完全溶解后补足失水,用10%盐酸或10%的氢氧化

常用的细菌培养基介绍

牛肉膏琼脂牛肉膏0.3克,蛋白胨1.0克,氯化钠0.5克,琼脂1.5克,水100毫升在烧杯内加水100毫升,放入牛肉膏、蛋白胨和氯化钠,用蜡笔在烧杯外作上记号后,放在火上加热。待烧杯内各组分溶解后,加入琼脂,不断搅拌以免粘底。等琼脂完全溶解后补足失水,用10%盐酸或10%的氢氧化钠调整pH值到7.2

常见的几类细菌培养基

  牛肉膏琼脂培养基  牛肉膏0.3g ,蛋白胨1.0g,氯化钠 0.5g,琼脂 1.5g, 水 100ml  在烧杯内加水100毫升,放入牛肉膏、蛋白胨和氯化钠,用蜡笔在烧杯外作上记号后,放在火上加热。待烧杯内各组分溶解后,加入琼脂,不断搅拌以免粘底。等琼脂完全溶解后补足失水,用10%盐酸或10%