《Science》光遗传技术开创癌症研究新见解
8月31日《Science》报道,一种形式的非小细胞肺癌(non-small cell lung cancer,NSCLC)突变可能通过模糊细胞对关键生长信号的感知来驱动肿瘤形成。由加州大学旧金山研究所领导的这项研究对许多人类癌症缺陷机制具有重要意义。 健康细胞依靠Ras/Erk生长信号途径中枢(又称Ras/MAPK通路)来解读生长、分裂和迁移相关的外部线索。但是,信息传递缺陷如何导致细胞生长失控并侵略性地感染其他身体部位?这在Ras/Erk缺陷癌症研究和治疗领域还是一座“圣杯”。 几十年研究,科学家们相信Ras/Erk驱动的癌症是因为突变导致一个或多个通路组分卡在促生长状态。研究人员已经开发出了有针对性的治疗方案,但是到目前为止,大多数都未能通过临床试验。 现在,利用加州大学旧金山研究所开发的高通量技术,科学家们可通过光脉冲控制Ras/Erk信号,然后快速读取由此产生的基因组活性,最终使研究人员在这种已被广泛研究的通......阅读全文
光遗传学——照进细胞的一束光
图片来源:Anna Reade 转基因斑马鱼胚胎上的闪亮蓝光让科学家选择性地激活光敏感转录因子。 从现在开始10年后,这种技术将会成为发育生物学和细胞生物学界人人使用的工具。 Kevin Gardner打开一个小冰箱模样的培养器,看着里面闪烁的蓝光,这种场景经常让他想起上世纪70年代的美国
Nature遗传学:癌症干细胞的护身符
癌症干细胞(CSC)能够通过自我更新和分化,启动并维持癌症的发生和发展。人们已经在越来越多的肿瘤中分离和鉴定到了癌症干细胞,比如结肠癌、肝癌、乳腺癌和胰腺癌。 癌症干细胞需要合适的巢穴才能维持自己的干性。在侵袭过程中癌症干细胞会走出巢穴到达一个不那么有好的环境,那它们是如何继续保持干性的呢?德
光遗传学技术的原理
光遗传学(optogenetics)又称光刺激基因工程(optical stimulation plus genetic engineering),是一种通过光学和遗传学技术在活体动物脑内精准控制细胞行为的技术。由于其高度的时空特异性,光遗传技术广泛应用于神经科学研究领域。2010年,光遗传学技术荣
光遗传学技术是什么?
光遗传学融合了光学及遗传学技术,通过遗传学方法将合适的外源光敏感蛋白靶向导入特定活细胞,利用特定波长的光照刺激光敏蛋白,调控神经元的活性,进而控制细胞乃至动物行为的开关。1、光遗传学技术研究方法①寻找合适的光敏蛋白。光敏蛋白(也称为视蛋白)是细胞膜上能够感受某一波长光照刺激而产生特定效应的一类膜蛋白
知识分享:光遗传学技术
光遗传学(optogenetics)又称光刺激基因工程(optical stimulation plus genetic engineering),是一种通过光学和遗传学技术在活体动物脑内精准控制细胞行为的技术。由于其高度的时空特异性,光遗传技术广泛应用于神经科学领域的研究。 2010
用于治疗癌症的“自然杀伤”细胞的表观遗传学开关
自然杀伤细胞是免疫系统中的即时杀手,能够即时杀灭外来侵入物和癌细胞。尽管科学家就如何利用这些细胞的潜在能力所开展研究已经有三十多年,但对这些自然杀伤细胞是如何从非免疫细胞转化而来的这个问题几乎没有取得任何进展。目前,研究者发现了一种酶,能够利用一种外遗传途径(一种能够修改细胞中DNA的读取方式,而不
癌症干细胞无限自我复制更新特性由表观遗传学塑造
癌症干细胞能够通过自我更新和分化,启动并维持癌症的发生和发展。为什么肿瘤之中只有癌症干细胞拥有这样的能力呢?加州大学圣地亚哥分校的研究人员发现,癌症干细胞的这种特性是由表观遗传学决定的。这项研究发表在本周的美国国家科学院院刊PNAS杂志上。 胶质母细胞瘤是一种高度侵袭性的脑瘤。研究显示,胶质母
Nat-Methods:光遗传学——细胞生物学新研究利器
中国古人云:工欲善其事,必先利其器!在细胞生物学领域创新的研究方法并不是特别多。光遗传学方法过去多应用于神经系统的研究。然而,全新的方法拓展了光遗传学应用范围,几乎可以用于所有组织器官的细胞生物学研究,这一全新的技术可能会细胞生物学研究带来新的曙光!传统对细胞信号研究几乎都是线性的,而光遗传学可
Cancer-Cell专题:癌症表观遗传学
癌症中的基因调控与反调控一直是人们关注的热点,现在这一领域已经取得了很大的进展。Cell旗下的Cancer Cell杂志本月特别推出专题,推荐了四篇有代表性的癌症表观遗传学文章。 Vulnerabilities of Mutant SWI/SNF Complexes in Cancer 癌症
光遗传学技术知识(一)
光遗传学(optogenetics)又称光刺激基因工程(optical stimulation plus genetic engineering),是一种通过光学和遗传学技术在活体动物脑内精准控制细胞行为的技术。由于其高度的时空特异性,光遗传技术广泛应用于神经科学领域的研究。2010年,光遗
Science:走向临床的光遗传学
光遗传学诞生后的头十年,大大推动了人们对正常和病理性神经回路的理解。今后的十年,光遗传学将迎来与转化医学的联姻,为疾病治疗带来新的机遇。本期Science杂志上,Bryson等人就展示了这样一个范例,他们将光遗传学工具与再生医学知识结合起来,在周围神经损伤的小鼠模型中恢复了肌肉的功能。 光
光遗传学技术知识(二)
3. 光遗传学所需的辅助技术及基本步骤 光遗传学技术包括的范围是广泛的。主要包括以下几种。图5. 光遗传学技术及其辅助技术 在光遗传操作中,细胞会表达特定的编码光敏蛋白的基因,然后使用光来改变细胞的行为。光遗传学控制细胞功能的基本步骤如下:图6. 光遗传学控制细胞功能的基本步骤 其中,通过病毒感染
光遗传学技术知识(三)
表3.ViGene提供的光敏通道蛋白类型 激活型光敏通道蛋白的应用2015年,Dheeraj Pelluru等发表在European Journal of Neuroscience上题为Optogenetic stimulation of astrocytes in the posterior
中国学者解析癌症干细胞中的表观遗传学调控
我们机体内始终存在着一些有发育潜能的成体干细胞,它们负责修复损伤、替代老化的细胞和组织。有一些癌细胞也拥有类似的特征,它们能够通过自我更新和分化,启动并维持癌症的形成和发展。这些细胞被称为癌症干细胞或癌症起始细胞(Cancer initiating cells,CIC),是细胞生长失控和抵抗化疗
光遗传学新型光控元件蛋白cpLOV2开发
近日,中国科学院合肥物质科学研究院强磁场科学中心研究员王俊峰课题组与三家国外团队(教授黄韵、教授韩纲和教授周育斌课题组)合作,基于燕麦蓝光受体蛋白LOV2,进行了优化循环排列(Circular permutation)设计,获得了能够提供不同锁定界面的光控开关元件蛋白cpLOV2,进一步拓展了L
Nature:癌症与表观遗传学重编程
延胡索酸(fumarate)是细胞三羧酸循环的一种中间产物。它天然存在于蔬菜水果中,也被用作调味的食物添加剂。Nature杂志发表的一项最新研究表明,代谢物延胡索酸过多会造成表观遗传学重编程,进而推动癌症发展。 遗传性平滑肌瘤病和肾细胞癌(HLRC)是一种罕见的人类癌症,会引起皮肤肿瘤和肾癌。
Nature综述:表观遗传学预测癌症弱点
由Bellvitge生物医学研究协会癌症表观遗传与生物学研究组Manel Esteller领导的研究组,发表题为“DNA methylation profiling in the clinic: applications and challenges”的综述文章,概况了近期在应用表观遗传
PNAS推翻长期的光遗传学观念
最近,意大利的研究人员采用一种新的光遗传学方法,推翻了长期持有的模式——光如何被转换为眼睛中的电子信号。相关研究结果发表在最近的《PNAS》杂志。 我们感知视觉世界的能力,依赖于光感受器中的细胞把光转换成电信号。视杆细胞光感受器的外节堆满了数以千计的脂质膜盘——内含有吸收光子的分子,它能够触发
PNAS推翻长期的光遗传学观念
最近,意大利的研究人员采用一种新的光遗传学方法,推翻了长期持有的模式――光如何被转换为眼睛中的电子信号。相关研究结果发表在最近的《PNAS》杂志。 我们感知视觉世界的能力,依赖于光感受器中的细胞把光转换成电信号。视杆细胞光感受器的外节堆满了数以千计的脂质膜盘――内含有吸收光子的分子,它能够触
美国院士Nature光遗传学重要成果
大多数人可能认为,我们用舌头感知五种基本味道——甜、酸、咸、苦和鲜味,然后将信息发送至我们的大脑“告诉”我们所尝的是什么味道。现在,科学家们颠覆了这一观点,证实在小鼠中通过操控大脑中的一些细胞群可以改变尝味的方式。他们的研究结果在线发表在《自然》(Nature)杂志上。 研究的领导者、美国国家
光遗传学之父Nature发表重要成果
斯坦福大学的研究人员在大鼠特定大脑区域发现了一小群神经细胞,它们的信号活动可以解释动物间冒险偏好的极大差异。这种活动不仅可以预测,并有效地决定了动物是决定冒险还是坚持安全的选择。这项研究描述在3月23日的《自然》(Nature)杂志上。 斯坦福大学生物工程学、精神病学及行为科学教授、
Cell:光遗传学重大成果
瑞典卡罗林斯卡学院(Karolinska Institutet)的研究人员首次在小鼠大脑中鉴定到了注意力神经元,操纵这种细胞的活性可以增强小鼠的注意力。这项研究发表在一月十四日的Cell杂志上,有助于进一步理解大脑额叶(frontal lobes)的工作机制。 额叶在大脑认知功能中起到了重
《自然》2016热点技术—精准光遗传学
《Nature Methods》盘点2015年度技术,选出了最受关注的技术成果:单粒子低温电子显微镜(cryo-EM)技术。 除此之外,也整理出了2016年最值得关注的几项技术,分别为:细胞内蛋白标记(Protein labeling in cells)、细胞核结构(Unraveling nuc
细胞遗传学检查
1.染色体检查 染色体检查亦称核型分析(karyotype analysis)是确诊染色体病的主要方法。目前随着显带技术的应用以及高分辩率染色体显带技术的出现和改进,能更准确地判断和发现更多的染色体数目和结构异常综合征,还可以发现新的微畸变综合征。值得注意的是,染色体检查应结合临床表现
中科院新成果揭示癌症干细胞中的表观遗传学调控
癌症干细胞能够通过自我更新和分化,启动并维持癌症的发生和发展。人们已经在越来越多的肿瘤中分离和鉴定到了癌症干细胞,比如结肠癌、肝癌、乳腺癌和胰腺癌。 Metadherin (MTDH)广泛参与了肿瘤生长、药物抗性、肿瘤复发和转移,但此前人们并不了解其分子机制。中科院的研究团队通过深入研究,揭示
Nature:光遗传学的光终于照到肿瘤免疫治疗领域!
“光照一照,你的肿瘤就缩小”听起来像是科幻,或者是某些赤脚民科的夸大其辞,但实际上,这是罗彻斯特大学的研究者们经过谨慎研究的结果,他们把一个非常新颖而有效的武器——光遗传学应用到了肿瘤免疫治疗领域,有效地缓解了实体瘤微环境的免疫抑制,肿瘤明显缩小。 众所周知,实体瘤周围有免疫抑制的微环境,导致
利用石墨烯“光测”癌细胞-为癌症预防提供新途径
我国科学家利用全内反射下石墨烯对介质折射率异常敏感的光学现象,实现了超灵敏单细胞实时流动传感。这一成果可以使癌细胞在形成之初即被精确“光测”出来,精度可达数千分之一,或将为癌症预防提供一条新途径。 石墨烯是一种呈蜂巢状排列的单层碳原子结构,是目前已知的最薄、最坚硬的纳米材料。在全内
表观遗传学药物有望解决癌症治疗难题
表观遗传学是一种调控基因表达的可逆途径,通过DNA和组蛋白的化学修饰,决定特定基因是否能得以表达。在癌症中,表观遗传学修饰的添加或删除,与肿瘤抑制基因的沉默或者癌基因的过表达有关。有研究显示,在标准的化疗流程之前先用表观遗传学药物处理癌细胞,可以增强这些细胞对抗癌药物的敏感性。这样的措施将大大有
光遗传学突破:用光提高记忆力
随着一个新的植物-人混合蛋白分子(称为OptoSTIM1)的产生,迅速发展的光遗传学领域又获得了一个突破性的进展。最近,由韩国先进科技学院(KAIST)副教授、韩国基础科学院(IBS)认知和社会性中心的Won Do Heo带领的一个研究小组,与Yong-Mahn Han教授、Daesoon Ki
光遗传学之父Cell发表突破成果
最近,斯坦福大学的科学家们结合两种尖端技术,发现前额叶皮层中的神经元被用来响应奖励或厌恶经历,这可能对治疗精神疾病和成瘾具有重要的意义。 前额叶皮层在哺乳动物的大脑中扮演了一个神秘但却主要的作用。它与情绪调节相关,前额叶皮层中的不同细胞似乎能响应正面和负面的体验。然而,前额叶皮层是如何支配奖励