金属载体强相互作用研究取得新进展

近日,中国科学院大连化学物理研究所航天催化与新材料实验室研究员乔波涛和中科院院士张涛团队与穆斯堡尔谱技术研究组研究员王军虎团队合作,在金属载体强相互作用研究方面取得新进展:首次发现铂族金属(Pt、Pd)与羟基磷灰石之间的金属载体强相互作用。研究成果在Chemical Science上发表。 1978年Tauster等发现二氧化钛等可还原性载体负载的铂族金属在高温还原后会失去对小分子(CO,H2)的吸附性能,并将该现象命名为金属载体强相互作用(Strong Metal-Support Interaction, SMSI)。SMSI能够改变金属纳米粒子的形貌和电子性质,因此可以改变反应活性与选择性,对催化剂的催化性能具有重要影响。同时,SMSI通常伴随着载体对金属颗粒的包埋,因而能够有效稳定金属粒子,有助于制备稳定型金属催化剂。 SMSI自发现以来其体系不断扩展,但大多集中在可还原性金属氧化物负载的铂族金属催化剂体系,且其发......阅读全文

大连化物所发现金属与惰性载体间的金属载体相互作用

  近日,中国科学院大连化学物理研究所催化基础国家重点实验室研究员傅强与中科院院士包信和团队,在金属与载体界面催化研究方面取得新进展。研究发现过渡金属催化剂与惰性的六方氮化硼(h-BN)载体之间存在经典的金属-载体强相互作用(Strong Metal-Support Interaction, SMS

金属载体强相互作用研究取得新进展

  近日,中国科学院大连化学物理研究所航天催化与新材料实验室研究员乔波涛和中科院院士张涛团队与穆斯堡尔谱技术研究组研究员王军虎团队合作,在金属载体强相互作用研究方面取得新进展:首次发现铂族金属(Pt、Pd)与羟基磷灰石之间的金属载体强相互作用。研究成果在Chemical Science上发表。  1

大连化物所等金属载体界面结构研究取得新进展

  近日,中国科学院大连化学物理研究所催化基础国家重点实验室催化反应化学研究组副研究员周燕、研究员申文杰等与德国卡尔斯鲁厄理工学院教授汪跃民、丹麦托普索公司博士Jens Sehested等合作,在铜催化剂活性位原子结构及反应机理研究方面取得新进展。研究成果在线发表在《自然-催化》(Nature Ca

原位增强金属载体相互作用影响醇的催化转化

  ACS Catal.:原位增强金属-载体相互作用影响醇的催化转化  催化界已经对强金属-载体相互作用(SMSIs)和催化剂失活进行了数十年的深入研究。SMSIs在负载型金属氧化物中的促进作用通常与高温(>500°C)下的H2处理有关,催化剂失活通常归因于烧结、活性金属的浸出、金属的过氧化以及反应

大连化物所等金属载体界面结构研究取得新进展

  近日,中国科学院大连化学物理研究所催化基础国家重点实验室催化反应化学研究组副研究员周燕、研究员申文杰等与德国卡尔斯鲁厄理工学院教授汪跃民、丹麦托普索公司博士Jens Sehested等合作,在铜催化剂活性位原子结构及反应机理研究方面取得新进展。研究成果在线发表在《自然-催化》(Nature Ca

大连化物所等金属载体界面结构研究取得新进展

  近日,中国科学院大连化学物理研究所催化基础国家重点实验室催化反应化学研究组副研究员周燕、研究员申文杰等与德国卡尔斯鲁厄理工学院教授汪跃民、丹麦托普索公司博士Jens Sehested等合作,在铜催化剂活性位原子结构及反应机理研究方面取得新进展。研究成果在线发表在《自然-催化》(Nature Ca

中科院大化所金属载体界面结构研究取得新进展

   近日,中科院大连化物所催化基础国家重点实验室周燕副研究员、申文杰研究员等与德国卡尔斯鲁厄理工学院汪跃民教授、丹麦托普索公司Jens Sehested博士等合作,在铜催化剂活性位原子结构及反应机理研究方面取得重要进展。研究成果发表在《自然—催化》上。  Cu/CeO2催化剂在水气变换、合成甲醇等

我所实现反应性金属—载体相互作用的原位结构解析

原文地址:http://www.dicp.cas.cn/xwdt/kyjz/202303/t20230328_6718304.html  近日,我所催化与新材料研究室杨冰副研究员等与中国科学技术大学路军岭教授团队合作,在低温反应性金属—载体相互作用(RMSI)的原位结构解析及高性能合金相结构创制方面

大连化物所发现金属—载体强相互作用的粒径效应

  近日,中国科学院大连化学物理研究所催化与新材料研究室研究员乔波涛团队与催化基础国家重点实验室研究员李杲团队合作,在金属—载体强相互作用方面取得进展,在Au/TiO2体系中发现了金属—载体强相互作用的粒径效应,并通过建立热力学平衡模型,阐释了这一效应产生的原因。  金属—载体强相互作用(SMSI)

大连化物所在金属载体强相互作用研究中取得新进展

   近日,大连化物所傅强研究员和包信和院士研究团队成功地将金属-载体强相互作用(SMSI)拓展并应用到金属/碳化物催化体系,证明了该作用对于设计高效碳化物基催化材料的重要作用。相关研究结果发表在《美国化学会志》(J. Am. Chem. Soc.)上。  金属-载体强相互作用(Strong Met

大连化物所在金属载体强相互作用研究中取得新进展

   近日,大连化物所傅强研究员和包信和院士研究团队成功地将金属-载体强相互作用(SMSI)拓展并应用到金属/碳化物催化体系,证明了该作用对于设计高效碳化物基催化材料的重要作用。相关研究结果发表在《美国化学会志》(J. Am. Chem. Soc.)上。  金属-载体强相互作用(Strong Met

质粒载体的载体大小的介绍

  大的质粒(大于15kb)不会很好转化而且DNA产量通常很低。在设计实验时要考虑到加入插入片段的最终载体大小,尽量用更小的载体。  兼容性  当多于一个质粒载体必须同时存在于同一个细菌细胞中,这两个质粒的复制子必须是兼容的。当他们不能稳定地共存时,则认为这两个质粒是不兼容的。  选择/检测插入片段

LITMUS39载体载体载体的基本信息和质粒图谱

LITMUS39载体载体基本信息载体名称LITMUS39载体抗性Ampicillin载体长度2817 bp载体类型Basic Cloning Vectors载体来源Evans PD, Cook SN, Riggs PD, Noren CJ.拷贝数High copy number5'引物M13

微载体

实验方法原理以高浓度接种细胞和微珠,然后按照要求进行稀释、搅拌和取样。实验材料起始培养物仪器、耗材生长培养基微载体搅拌培养瓶磁力搅拌器实验步骤1. 按照所需最终培养液量的 1/3,以 2~3 g/L 混悬微珠。2. 用胰蛋白酶消化和计数细胞,以正常接种浓度的 3~5 倍将细胞接种到微珠悬液中。3.

微载体

            实验方法原理 以高浓度接种细胞和微珠,然后按照要求进行稀释、搅拌和取样。 实验材料 起始培养物

微载体

            实验方法原理 以高浓度接种细胞和微珠,然后按照要求进行稀释、搅拌和取样。 实验材料 起始培养物

简述慢病毒载体的载体质粒

  载体质粒上HIV-1的顺式序列通常包括两端的LTR、剪切位点及包装信号Ψ等。此外,研究表明,gag基因5′端的序列可提高载体RNA的包装效率;Rev蛋白需要与Rev反应元件(RRE)相作用,将未剪切的载体转录产物从细胞核转运到胞浆。因此,Naldini等在载体上保留了gag基因5′端350bp的

中国科大基于单原子催化剂研究金属载体相互作用获进展

  近日,中国科学技术大学合肥微尺度物质科学国家实验室和化学与材料科学学院教授曾杰课题组、南开大学教授胡振芃和中科院上海应用物理研究所研究员司锐合作,基于单原子催化剂,从电子最高占据态角度定量研究了金属-载体相互作用。该成果以The Highest Occupied State of Rh Sing

中国科大在催化剂金属载体强相互作用研究中取得进展

  负载型金属催化剂对于现代工业至关重要。大量的实验和理论研究表明,负载型金属催化剂中的载体不仅扮演着分散和稳定金属纳米颗粒的作用,还会与金属颗粒产生强相互作用,进而影响催化剂的活性、选择性及稳定性。近日,中国科学技术大学教授梁海伟课题组与武晓君课题组进行实验和理论相结合的合作研究,基于硫掺杂碳负载

中科大强金属载体相互作用(SMSI)催化剂新进展

  近日,中国科学技术大学张颖课题组在强金属-载体相互作用(SMSI)催化剂方面取得重要进展。研究者首次发现了强金属磷化物-磷酸盐载体相互作用(SMPSI),提出了解决非贵金属催化剂的催化活性、选择性、稳定性和抗氧化能力较差,特别是在水相和酸性环境中应用受限的全新方案,拓宽了SMSI的应用范围。相关

Science:在二氧化硅载体上合成超小双金属纳米颗粒

  南卡罗莱纳大学J. R. Regalbuto(通讯作者)设计了一种相对简单、高效、普适的方法制备高度分散、良好合金化的双金属纳米颗粒,该方法可实现贵金属和碱金属(Pt、Pd、Co、Cu、Ni)中任意两种金属的共同吸附,制造出分散均匀,合金化均匀,颗粒平均尺寸为0.9-1.4纳米的负载型双金属纳米

微载体实验

实验方法原理 以高浓度接种细胞和微珠,然后按照要求进行稀释、搅拌和取样。实验材料 起始培养物仪器、耗材 生长培养基微载体搅拌培养瓶磁力搅拌器实验步骤 1. 按照所需最终培养液量的 1/3,以 2~3 g/L 混悬微珠。2. 用胰蛋白酶消化和计数细胞,以正常接种浓度的 3~5 倍将细胞接种到微珠悬液中

siRNA表达载体

多数的siRNA表达载体依赖RNA聚合酶III 启动子(pol III)中的一种,操纵一段45—50nt的发夹结构RNA(small hairpin RNA, shRNA)在哺乳动物细胞中的表达,shRNA在细胞内会自动被加工成为siRNA,从而引发基因沉默或者表达抑制。这一类启动子包括大家熟悉的人

生物载体分类

质粒载体质粒载体是一种相对分子质量较小、独立于染色体DNA之外的环状DNA(一般有1~200 kb左右,kb为千碱基对),有的一个细菌中有一个,有的一个细菌中有多个。质粒能通过细菌间的接合由一个细菌向另一个细菌转移,可以独立复制,也可整合到细菌染色体DNA中,随着染色体DNA的复制而复制。噬菌体载体

质粒与载体

一、质粒绝大多数的生物都是以DNA 的形式来储藏其遗传信息。遗传物质要能生生不息地传给后代的首要条件就是它至少要具有一个复制原(ori, origin of replication,或译为复制起点),使整个基因体得以复制。含有复制原的遗传物质称为replicon,我们姑且把它译为为复制体吧!原核性复

克隆载体的功能作用及常见的载体介绍

克隆载体通常采用从病毒、质粒或高等生物细胞中获取的DNA作为克隆载体,在载体上插入合适大小的 外源DNA片段,并注意不能破坏载体的自我复制性质。将重组后的载体引入到宿主细胞中,并在宿主细胞中大量繁殖。常见的载体有质粒、噬菌粒、酵母人工染色体。

固定化细胞技术载体要求及常用载体介绍

①载体应是亲水的,疏水载体与有机溶剂相同的变性影响。②载体也是要求有一定的机械强度和稳定性。③常用的载体包括:1、天然高分子(纤维素、琼脂糖、淀粉、葡萄糖凝胶、胶原及其衍生物等)2、合成高聚物(尼龙。多聚氨基酸等)3、无机支持物(多孔玻璃、金属氧化物等)

我所发表氧化气氛下诱导金属载体强相互作用及其催化应用的综述文章

原文地址:http://www.dicp.cas.cn/xwdt/kyjz/202304/t20230413_6737475.html  近日,我所能源研究技术平台穆斯堡尔谱研究组(DNL2005组)王军虎研究员团队发表了氧化气氛下诱导金属载体强相互作用(O-SMSI)及其催化应用的综述文章。该综述

GPC载体的种类

GPC载体的种类:1. 交联聚苯乙烯凝胶2. 多孔性玻璃3. 聚乙酸乙烯酯凝胶及聚丙烯酰胺凝胶4. 木质素凝胶等

什么是质粒载体?

  质粒载体是在天然质粒的基础上为适应实验室操作而进行人工构建的质粒。与天然质粒相比,质粒载体通常带有一个或一个以上的选择性标记基因(如抗生素抗性基因)和一个人工合成的含有多个限制性内切酶识别位点的多克隆位点序列,并去掉了大部分非必需序列,使分子量尽可能减少,以便于基因工程操作。