创新与机遇感知光谱技术分析仪器的发展
分析测试百科网讯 由理化分析测试技术学会主办,清华大学、北京大学、中国科学院化学研究所、国家重有色金属质量监督检验中心协办,北京理化分析测试技术学会光谱分会承办的2018年全国光谱大会于2018年9月12日至14日在北京召开。本次大会凝聚国内光谱界同仁的力量,着重面向各类技术问题的应对、光谱技术人才队伍的建设,促进光谱分析基础研究和应用技术的发展。来自全国高等院校、科研机构和各企业单位的同仁200多人参加。本次会议还将筹备成立标准化工作委员会。会议现场清华大学教授孙素琴致辞大会主席院士王海舟致辞 王海舟讲到此次会议大家共聚一堂,感知光谱技术分析仪器的发展。紧密结合,共同努力为光谱发展,发挥独创优势,共同努力为光谱技术发展做出更多贡献。大会报告大会主持人:北京矿冶研究总院测试研究所研究员 冯先进中国科学院生态环境研究中心院士 江桂斌 江桂斌院士带来了题为《我国分析仪器的创新、机遇和存在的问题》的报告。江桂斌讲到高水平分析仪......阅读全文
专注于拉曼光谱分析相关产品及应用技术的开发!
什么是拉曼光照射到物质上发生弹性散射和非弹性散射. 弹性散射的散射光是与激发光波长相同的成分,成为瑞利散射;非弹性散射的散射光有比激发光波长长的和短的成分, 称为拉曼散射(斯托克斯及反斯托克斯拉曼散射)。拉曼散射大约只占散射光的千万分之一,这些散射散布到四面八方,而且它们的波长和偏振态都会发
光谱分析
主要包括火焰和电热原子吸收光谱AAS, 电感耦合等离子体原子发射光谱ICP-OES, X-射线荧光光谱XFS和X-射线衍射光谱分析法XRD;(1) 原子吸收光谱(Atomic Absorption Spectrometry, AAS) 又称原子吸收分光光度分析。原子吸收光谱分析是基于试样蒸气相中被测
光谱分析2—光谱分析法简介
什么是光谱分析?光谱分析的意义? 1858-1859年,德国化学家本生和物理学家基尔霍夫著名物理学家进行合作,建立起了第一台把光谱分析作为主要目的的分光镜,宣告了光谱分析方法的诞生,奠定了一种新的化学分析方法—光谱分析法的基础,初步上解决了对于化学物质进行细微的微观认识并且进行精确研究的这一难
2011光谱分析测试技术与应用暨仪器设备市场发展研讨会
关于举办“2011全国光谱分析测试技术与应用暨仪器设备市场发展研讨会”的通知 各有关单位: 随着社会的发展和对食品安全、环境检测等应用技术的进一步提高,光谱分析检测技术得到了快速的发展,新仪器、新技术不断地出现,对光谱分析测试技术也不断地提出了新的更高的技术要求,为了适应社会的需求和提高光谱分析
第三届江苏无机光谱分析应用技术研讨会征稿通知(第一轮)
第三届江苏省无机光谱分析应用技术研讨会论文征稿通知(第一轮) 由江苏省分析测试协会、江苏省理化测试中心主办,江苏省分析测试协会无机光谱专业委员会、江苏省无机材料专业测试服务中心、江苏省食品营养成分与有毒有害物质检测中心承办的“第三届江苏省无机光谱分析应用技术研讨会”定于2011年11月上旬在广州召
光谱分析科普
由于每种原子都有自己的特征谱线,因此可以根据光谱来鉴别物质和确定它的化学组成.这种方法叫做光谱分析.做光谱分析时,可以利用发射光谱,也可以利用吸收光谱.这种方法的优点是非常灵敏而且迅速.某种元素在物质中的含量达10^-10(10的负10次方)克,就可以从光谱中发现它的特征谱线,因而能够把它检查出来.
光谱分析定义
由于每种原子都有自己的特征谱线,因此可以根据光谱来鉴别物质和确定它的化学组成。这种方法叫做光谱分析。做光谱分析时,可以利用发射光谱,也可以利用吸收光谱,光谱类测试(主要包括红外光谱,核磁共振波谱,X射线衍射仪,紫外可见分光光度计,拉曼光谱仪) 采用物质对不同波长区域光谱的吸收情况,对化合物的官能
材料光谱分析
主要包括火焰和电热原子吸收光谱AAS, 电感耦合等离子体原子发射光谱ICP-OES, X-射线荧光光谱XFS和X-射线衍射光谱分析法XRD;(1) 原子吸收光谱(Atomic Absorption Spectrometry, AAS) 又称原子吸收分光光度分析。原子吸收光谱分析是基于试样蒸气相中被测
光谱分析分类
原理 根据现代光谱仪器的工作原理,光谱仪可以分为两大类:经典光谱仪和新型光谱仪。经典光谱仪器是建立在空间色散原理上的仪器;新型光谱仪器是建立在调制原理上的仪器。经典光谱仪器都是狭缝光谱仪器。调制光谱仪是非空间分光的,它采用圆孔进光。 根据色散组件的分光原理,光谱仪器可分为:棱镜光谱仪,衍射光
拉曼光谱的光谱分析
实验做出的谱图(见附图,以波长为单位)标准的谱图(如下,以波数为单位)通过的结构分析解释光谱:分子为四面体结构,一个碳原子在中心,四个氯原子在四面体的四个顶点。当四面体绕其自身的一轴旋转一定角度,或记性反演(r—-r)、或旋转加反演之后,分子的几何构形不变的操作称为对称操作,其旋转轴成为对称轴。CC
拉曼光谱的光谱分析
实验做出的谱图(见附图,以波长为单位)标准的谱图(如下,以波数为单位)通过的结构分析解释光谱:分子为四面体结构,一个碳原子在中心,四个氯原子在四面体的四个顶点。当四面体绕其自身的一轴旋转一定角度,或记性反演(r—-r)、或旋转加反演之后,分子的几何构形不变的操作称为对称操作,其旋转轴成为对称轴。CC
光谱分析包括哪些
通过分析光谱的特性来分析物质结构特征或含量的方法。包括对物质发射光谱、吸收光谱、荧光光谱分析等,也包括不同波长段如可见、红外、紫外、X射线光谱分析等
光谱分析的概念
光谱分析属于光学分析(optical analysis)。光学分析法是依据物质的电磁辐射或电磁的倍射与物质相互作用后发生的变化来测定物质的性质、含量和结构的一类分析方法,广义上为光学法,分为光谱分析法和非光谱分析法两大类。
什么是光谱分析
根据物质的光谱来鉴别物质及确定它的化学组成和相对含量的方法叫光谱分析.其优点是灵敏,迅速.历史上曾通过光谱分析发现了许多新元素,如铷,铯,氦等.根据分析原理光谱分析可分为发射光谱分析与吸收光谱分析二种;根据被测成分的形态可分为原子光谱分析与分子光谱分析。光谱分析的被测成分是原子的称为原子光谱,被测成
光谱分析的概念
根据物质的光谱来鉴别物质及确定它的化学组成和相对含量的方法叫光谱分析.其优点是灵敏,迅速.历史上曾通过光谱分析发现了许多新元素,如铷,铯,氦等.根据分析原理光谱分析可分为发射光谱分析与吸收光谱分析二种;根据被测成分的形态可分为原子光谱分析与分子光谱分析。光谱分析的被测成分是原子的称为原子光谱,被测成
光谱分析的原理
发射光谱分析是根据被测原子或分子在激发状态下发射的特征光谱的强度计算其含量。吸收光谱是根据待测元素的特征光谱,通过样品蒸汽中待测元素的基态原子吸收被测元素的光谱后被减弱的强度计算其含量。它符合郎珀-比尔定律:A= -lg I/I o= -lgT = KCL式中I为透射光强度,I0为发射光强度,T为透
吸收光谱分析
实验86 吸收光谱分析 光谱分析可以分为发射光谱分析和吸收光谱分析两大类。当构成物质的分子或原子受到激发而发光,产生的光谱称为发射光谱,发射光谱的谱线与组成物质的元素及其外围电子的结构有关。吸收光谱是指光通过物质被吸收后的光谱,吸收光谱则决定于物质的化学结构,与分子中的双
光谱分析法
光谱法的优缺点(1)分析速度较快 原子发射光谱用于炼钢炉前的分析,可在l~2分钟内,同时给出二十多种元素的分析结果。(2)操作简便 有些样品不经任何化学处理,即可直接进行光谱分析,采用计算机技术,有时只需按一下键盘即可自动进行分析、数据处理和打印出分析结果。在毒剂报警、大气污染检测等方面,采用分子光
吸收光谱分析
实验86 吸收光谱分析 光谱分析可以分为发射光谱分析和吸收光谱分析两大类。当构成物质的分子或原子受到激发而发光,产生的光谱称为发射光谱,发射光谱的谱线与组成物质的元素及其外围电子的结构有关。吸收光谱是指光通过物质被吸收后的光谱,吸收光谱则决定于物质的化学结构,与分子中的双键有关。各种物质
光谱分析法
光谱法的优缺点:(1)分析速度较快:原子发射光谱用于炼钢炉前的分析,可在l~2分钟内,同时给出二十多种元素的分析结果。(2)操作简便:有些样品不经任何化学处理,即可直接进行光谱分析,采用计算机技术,有时只需按一下键盘即可自动进行分析、数据处理和打印出分析结果。在毒剂报警、大气污染检测等方面,采用分子
光谱分析是什么
根据物质的光谱来鉴别物质及确定它的化学组成和相对含量的方法叫光谱分析.其优点是灵敏,迅速.历史上曾通过光谱分析发现了许多新元素,如铷,铯,氦等.根据分析原理光谱分析可分为发射光谱分析与吸收光谱分析二种;根据被测成分的形态可分为原子光谱分析与分子光谱分析。光谱分析的被测成分是原子的称为原子光谱,被测成
什么是光谱分析?
根据物质的光谱来鉴别物质及确定它的化学组成和相对含量的方法叫光谱分析.其优点是灵敏,迅速.历史上曾通过光谱分析发现了许多新元素,如铷,铯,氦等.根据分析原理光谱分析可分为发射光谱分析与吸收光谱分析二种;根据被测成分的形态可分为原子光谱分析与分子光谱分析。光谱分析的被测成分是原子的称为原子光谱,被
光谱分析的历史
1802年,有一位英国物理学家沃拉斯顿为了验证光的色散理论重做了牛顿的实验。这一次,他在三棱镜前加上了狭缝,使阳光先通过狭缝再经棱镜分解,他发现太阳光不仅被分解为牛顿所观测到的那种连续光谱,而且其中还有一些暗线。可惜的是他的报告没引起人们注意,知道的人很少。1814年,德国光学家夫琅和费制成了第一台
光谱分析知多少
由于每种原子都有自己的特征谱线,因此可以根据光谱来鉴别物质和确定它的化学组成.这种方法叫做光谱分析.做光谱分析时,可以利用发射光谱,也可以利用吸收光谱.这种方法的优点是非常灵敏而且迅速.某种元素在物质中的含量达10^-10(10的负10次方)克,就可以从光谱中发现它的特征谱线,因而能够把它检查出来.
简单认识光谱分析
根据物质的光谱来鉴别物质及确定它的化学组成和相对含量的方法叫光谱分析.其优点是灵敏,迅速.历史上曾通过光谱分析发现了许多新元素,如铷,铯,氦等.根据分析原理光谱分析可分为发射光谱分析与吸收光谱分析二种;根据被测成分的形态可分为原子光谱分析与分子光谱分析。光谱分析的被测成分是原子的称为原子光谱,被测成
光谱分析的特点
①操作简便,分析速度较快。不少光谱分析无须对样品进行处理可直接分析,如XRF可直接分析固体、液体样品。原子发射光谱可同时对多种元素分析,省去复杂的分离操作等。②不需纯标准样品即可实现定性分析。原子发射光谱、红外光谱等只需利用已知谱图,即可进行定性分析。这是光谱分析一个十分突出的优点。③选择性好,可测
荧光光谱分析
当紫外线照射到某些物质的时候,这些物质会发射出各种颜色和不同强度的可见光,而当紫外线停止照射时,所发射的光线也随之很快地消失,这种光线被称为荧光。 西班牙的内科医生和植物学家N.Monardes于1575年第一次记录了荧光现象。17世纪,Boyle和Newton等著名科学家再次观察到荧光现象。17
光谱分析法
(一)紫外—可见光—近红外分光光度计紫外—可见光—近红外分光光度计是对彩色宝石内所含致色杂质离子在不同波段选择性吸收而进行检测的仪器。其常用的检测范围为190~1100nm,最远可检测3000nm的区域。其原理是:利用一定频率的紫外—可见光照射被分析的物质,引起分子中价电子的跃迁,紫外—可见光被选择
什么是光谱分析
通过分析光谱的特性来分析物质结构特征或含量的方法。包括对物质发射光谱、吸收光谱、荧光光谱分析等,也包括不同波长段如可见、红外、紫外、X射线光谱分析等。
光栅光谱仪光谱分析简介
光谱分析方法作为一种重要的分析手段,在科研、生产、质控等方面,都发挥着极大的作用。无论是穿透吸收光谱,还是荧光光谱,拉曼光谱,如何获得单波长辐射是不可缺少的手段。由于现代单色仪可具有很宽的光谱范围(UV -IR),高光谱分辨率(到0.001nm),自动波长扫描,完整的电脑控制功能极易与其他周边设