Antpedia LOGO WIKI资讯

蛋白质酪氨酸硝化和细胞信号转导

摘要 蛋白质硝基酪氨酸作为一氧化氮(NO)衍生的蛋白质翻译后修饰产物,被认为是许多生理和病理条件下的生物标志物。本文综述了蛋白质酪氨酸硝化可以作为信号调节元件与已知的信号途径相关,包括NO、蛋白质酪氨酸激酶、丝裂原激活蛋白激酶、T2淋巴细胞、转录因子NF2κB、Ca2 +等。同时也论证了蛋白质酪氨酸硝化作为信号转导元件的可能性。点击这里进入下载页面:进入下载页面......阅读全文

Nat Cell Bio丨冯新华组揭示肿瘤中TGF-β信号失活的新机制

  TGF-β信号通路在癌症发生的早期具有重要抑癌作用,但癌细胞自身常会建立起许多逃逸TGF-β信号的分子机制【1,2】。在正常的上皮细胞和早期肿瘤细胞里,TGF-β通路能抑制细胞增殖,诱导细胞凋亡,起抑瘤作用。在肿瘤发生过程中,肿瘤细胞可以通过信号通路成员的缺失或功能性改变,逃脱TGF-β的肿瘤抑

Nature子刊发文阐明癌症发生的新机制

  来自浙江大学生命科学研究院的冯新华实验室首次揭示了在间变性淋巴瘤激酶(ALK)阳性肿瘤中SMAD4存在酪氨酸磷酸化修饰,此修饰导致经典TGF-β/SMAD信号通路的功能丧失,而ALK抑制剂能够恢复ALK阳性肿瘤细胞对TGF-β信号的响应。该研究对于细胞信号转导的精细调控具有重要的理论意义,同时对

中国科大细胞动力学研究取得新进展

  近日,中国科学技术大学细胞迁移与肿瘤转移动力学研究团队,利用功能蛋白质组学、结构生物学及纳米尺度分子成像技术,鉴定了GTP酶激活蛋白 ACAP4调控细胞膜动力学的结构基础,并深入解析了细胞外微环境调控肿瘤细胞定向运动的分子动力学机制。该成果在线发表在6月17日《美国科学院院报》上。   细

抗肿瘤药物研究及新药筛选(一)

提  纲一、化疗药物的发展二、肿瘤的药物治疗三、抗肿瘤药物筛选及评价四、体外抗肿瘤活性试验五、体内抗肿瘤活性试验一、化疗药物的发展• 近代肿瘤化疗学始于20世纪40年代。•  50年代通过动物筛选化疗药物发现了5FU、MTX、CTX等,化疗学有了发展。•  6

Science背靠背丨相分离如何促进膜受体信号转导

  相分离在膜受体及其下游信号转导通路中常有发生。以T细胞活化过程为例,TCR被Src家族激酶磷酸化后,招募胞内酪氨酸激酶ZAP70,后者磷酸化骨架蛋白上T细胞活化linker(LAT)的酪氨酸位点。磷酸化后的LAT可与接头蛋白Grb2的SH2/SH3结构域、GEF蛋白的脯氨酸富含域形成互作网络,发

年终盘点:2016年国内不容错过的重磅生物研究

  时间总是过得很快,2016年马上就要过去了,迎接我们的将是崭新的2017年,2016年,我国有很多优秀科研机构的科学家们都做出了意义重大、影响深远的研究成果,发表在国际顶级期刊上。本文中小编盘点了2016年我国科学家发表的一些重磅级研究,以饕读者。   --结构生物学 --  1.清华大学 施一

幽门螺杆菌空泡毒素VacA研究

ATCC菌种 幽门螺杆菌(Hp)是1983年由Marshall和Warren首次分离得到的一种革兰染色阴性的、螺旋状、微需氧、主要定居在人胃黏膜、引起人类消化道疾病发生发展的重要病原菌。幽门螺杆菌的感染呈全球性分布,其感染率与当地公共卫生状况有关,据报道,在西方国家大约30%~50%的成人

液相芯片技术的原理与应用

液相芯片,也称为微球体悬浮芯片(suspension array,liquid chip),是基于xMAP(flexible MultiAnalyte Profiling)技术的新型生物芯片技术平台,它是在不同荧光编码的微球上进行抗原抗体、酶底物、配体

液相芯片技术的原理与应用进展

   液相芯片,也称为微球体悬浮芯片(suspension array,liquid chip),是基于xMAP(flexible Multi Analyte Profiling)技术的新型生物芯片技术平台,它是在不同荧光编码的微球上进行抗原 抗体、酶 底物、配体 受体的结合

“干细胞及转化研究”等6个重点专项2018年项目申报发布

  5月22日,科技部官网发布了《关于对国家重点研发计划干细胞及转化研究等6个重点专项2018年度项目申报指南征求意见的通知》,其中,“干细胞及转化研究”重点专项、“蛋白质机器与生命过程调控”重点专项、“纳米科技”重点专项 与生物医学领域相关。  关于对国家重点研发计划干细胞及转化研究等6个重点专项

靶向探针精确操纵蛋白质

北京大学化学与分子工程学院教授陈鹏正在实验中。 作为生物体内含量最多的一类生物大分子,蛋白质是生物功能的主要执行者,在各种生命活动中扮演着关键角色。科学家一直在探索适用于活体环境的蛋白质操纵工具,以实现对目标蛋白质结构和功能的深入研究,这已经成为当今化学生物学领域的前沿热点之一。 在

生物质谱技术在蛋白质组学中的应用

  一、 前言[1,2]   基因工程已令人难以置信的扩展了我们关于有机体DNA序列的认识。但是仍有许多新识别的基因的功能还不知道,也不知道基因产物是如何相互作用从而产生活的有机体的。功能基因组试图通过大规模实验方法来回答这些问题。但由于仅从DNA序列尚不能回答某基因的表达时间、表达量

2012国家自然科学基金评审结果名单之清华大学(生物类)

  来自国家自然科学基金委员会的消息,国家自然科学基金委员会公布了2012年度面上项目、重点项目、重大国际(地区)合作研究项目、青年科学基金项目、地区科学基金项目、海外及港澳学者合作研究基金项目、科学仪器基础研究专款项目等方面的评审结果。有关评审结果将通知相关依托单位,其科研管理人员可登录科学基金网

多肽修饰合成常用策略(一)

多肽是由多个氨基酸通过肽键连接而形成的一类化合物,普遍存在于生物体内,迄今在生物体内发现的多肽已达数万种。多肽在调节机体各系统、器官、组织和细胞的功能活动以及在生命活动中发挥重要作用,并且常被应用于功能分析、抗体研究、药物研发等领域。随着生物技术与多肽合成技术的日臻成熟,越来越多的多肽药物被开发并应

兰州大学PLOS解析赤霉素信号转导分子机理

  2014年7月10日,国际学术期刊《PLOS Genetics》(五年影响因子9.44)在线发表了兰州大学的一项最新研究成果“Arabidopsis DELLA Protein Degradation Is Controlled by a Type-One Protein Phosphatase

兰州大学PLOS解析赤霉素信号转导分子机理

  2014年7月10日,国际学术期刊《PLOS Genetics》(五年影响因子9.44)在线发表了兰州大学的一项最新研究成果“Arabidopsis DELLA Protein Degradation Is Controlled by a Type-One Protein Phosphatase

Nature:糖醛酸代谢过程尿苷二磷酸葡萄糖抑制肺癌转移

  6月27日,国际学术期刊《自然》(Nature)在线发表了中国科学院分子细胞科学卓越创新中心/生物化学与细胞生物学研究所杨巍维研究组的最新研究成果:UDP-glucose accelerates SNAI1 mRNA decay and impairs lung cancer metastasi

《发育细胞》-林圣彩孟安明等-细胞信号转导研究

来自厦门大学生命科学学院细胞生物学与肿瘤细胞工程教育部重点实验室(Key Laboratory of Ministry of Education for Cell Biology and Tumor Cell Engineering),清华大学生命科学与生物技术系教育部蛋白质科学重点实验室,香港理工

中国科技大学PNAS细胞动力学研究新发现

  来自中国科技大学的研究人员在新研究中,揭示了GTP酶激活蛋白ACAP4调控细胞膜动力学的结构基础及分子机制,这一研究对于深入了解肿瘤细胞转移信号通路及调控提供了一些重要的新线索,相关研究发现发表在6月17日的《美国科学院院刊》(PNAS)上。   文章的通讯作者是中国科技大学的姚雪彪(Xueb

中科大:细胞动力学研究取得进展

  来自中国科技大学的研究人员在新研究中,揭示了GTP酶激活蛋白ACAP4调控细胞膜动力学的结构基础及分子机制,这一研究对于深入了解肿瘤细胞转移信号通路及调控提供了一些重要的新线索,相关研究发现发表在6月17日的《美国科学院院刊》(PNAS)上。   文章的通讯作者是中国科技大学的姚雪彪(Xueb

科学家揭示尿苷二磷酸葡萄糖抑制肺癌转移的新功能

  国际学术期刊《自然》(Nature)在线发表了中国科学院分子细胞科学卓越创新中心/生物化学与细胞生物学研究所杨巍维研究组的最新研究成果:UDP-glucose accelerates SNAI1 mRNA decay and impairs lung cancer metastasis。研究首次

P38MAPK信号转导通路

P38MAPK 信号转导通路分裂原激活的蛋白 激酶(mitogen activated protein kinases,MAPK)家族是非常保守的丝氨酸/苏氨酸蛋白激酶,是信号转导过程中一组主要的信号分子,在发育和疾病发生过程中起重要作用。该家族有4个成员,即细胞外信号调节激酶(extra

PNAS-杨弋等-二硫键蛋白质组学研究

我国二硫键蛋白质组学的研究取得新突破。近日出版的《美国科学院院刊》(PNAS),发表了华东理工大学生物反应器工程国家重点实验室及药学院教授杨弋、哈佛大学医学院教授Joseph Loscalzo合作完成的论文《哺乳动物细胞中线粒体对二硫键蛋白质组的调节》。 这项研究成果,对了解二硫键的形成及

厦大、清华最新《Developmental Cell》文章

来自厦门大学生命科学学院细胞生物学与肿瘤细胞工程教育部重点实验室(Key Laboratory of Ministry of Education for Cell Biology and Tumor Cell Engineering),清华大学生命科学与生物技术系教育部蛋白质科学重点实验室,香港理工

Nat Immunol:CIS——NK细胞抗肿瘤的新型免疫检查靶点

  CD8效应细胞的功能受到多种调节性蛋白的影响。对这些叫做“检查点(checkpoint)”的蛋白质的鉴定以及特异性的阻断能够有效治疗癌症。例如,针对CD8 T细胞的抑制性受体“PD-1”的抗体能够有效阻断其与相应配体的结合,进而增强抗肿瘤CD8 T细胞免疫反应。然而,尽管针对CD8 T细胞抗肿瘤

2006年中国植物科学若干领域重要研究进展

4  光合作用与碳循环 光系统Ⅱ (PSⅡ)是叶绿体类囊体膜中的一个色素蛋白复合体,在光合作用 光反应过程中起重要作用。为了阐明 PSⅡ 的组装过程,中国科学院植物研究所张立新研究组对 PSⅡ 低 含量的拟南芥突变体(lpa1)进行了研究。结果表明,体外蛋白质标记实验显示 lpa1

生物发光技术研究及其应用进展

摘要:目的:了解生物发光种类、机理及其在医学、生物科学、食品、环保等领域的应用。方法:对有关的文献中生物发光种类、机理及其在上述领域的具体应用进行综述。结果:生物发光有两类,机理明确,应用广泛。结论:生物发光在很多领域的应用日趋广泛,对其深入了解和研究至关重要。生物发光是生物发光器在细胞或生物体内发

翻译后修饰蛋白质的定性和定量实验2

二、用 于 鉴 定 P T M 的富 集 技 术2.1 磷酸化丝氨酸、苏氨酸、酪氨酸残基的可逆磷酸化也许是研究最为深人的 PT M 。蛋白质磷酸化信号网络介导细胞对与不同的应激因子、生长因子、细胞因子以及细胞间相互作用作出响应。憐酸化还影响多种细胞进程,如增殖、凋亡 、迁移 、转录和蛋白质翻译(W

长春应化所设计合成新型稀土基磁性亲和材料

  蛋白质的可逆磷酸化修饰是生物体内普遍存在的信息转导调节方式,几乎参与生命活动的所有过程,在细胞的增殖、发育和分化,细胞信号转导、转录和翻译,细胞的周期调控、蛋白降解和新陈代谢,细胞生存、细胞凋亡和肿瘤发生等方面发挥着重要的作用。目前已知许多人类疾病的发生都与异常的蛋白质磷酸化修饰

揭示糖尿病新机制还得从这类修饰入手(二)

02、组学生信分析发现糖尿病小鼠胰岛中信号通路重构为了探讨调控磷酸化蛋白质组水平变化的机制,作者对db/db胰岛中显著变化的激酶底物motif进行分析(图2A)。结果显示,与高营养素诱导mTOR激活一致,p70S6K底物motif显著富集,而AMPK motif下调表达。其他激酶motif,