从“无用”到“有用”
美国宾夕法尼亚州立大学的研究人员发现,普通感冒病毒、SARS、肝炎病毒和脑炎病毒等特定类型的病毒都采用一种独特的机制进行复制,揭示了此前人们未能深入了解的病毒聚合酶特定区域的功能。这项研究有望帮助研究人员改进现有疫苗,也为人们提供了疫苗研发的新途径。该研究发表在Structure杂志上。 有机体内的聚合酶负责读取并复制遗传物质。一些病毒中单链RNA组成的遗传物质能引发SARS、流感和小儿麻痹等疾病,而另一些病毒中双链DNA组成的遗传物质会引发疱疹和结膜炎等疾病。不论病毒的遗传物质是DNA还是RNA,病毒都会利用宿主细胞的复制机制,强迫其复制病毒自身的遗传物质,而最终繁殖出来的病毒拷贝会进行传播并感染其他细胞。 DNA病毒等许多有机体的聚合酶都具有"cupped right hand"结构,其原子构型就像一个手掌、手指和拇指。“在由DNA作为遗传物质的有机体中,手掌结构内有特殊的螺旋结构,这也是大多数酶作用的位......阅读全文
有机体表型适应的概念
表型适应:描述的是有机体在个体水平上的变化,包括生理、行为、形态等方面,时间尺度较短,变化的特征是可逆转的。
有机体基因型适应的概念
又称达尔文适应值或适合度·某一基因型个体与其他基因型个体相比时能够存活并留下后代的能力·一般用W或w表示·是对自然选择进行定量研究的重要参数·通常将适应值的最高值定为1。
Nature:揭示有机体的器官如何知道停止生长
作为世界上最小的鱼,袖珍鲤(Paedocypris)的尺寸只有7毫米。与鲸鲨的9米尺寸相比,这算不了什么。这种小鱼与鲨鱼有着许多相同的基因和相同的解剖结构,但背鳍和尾鳍、鳃、胃和心脏,却小了几千倍!这种小鱼的器官和组织是如何形成的?它们的器官和组织是如何迅速停止生长的,而不像鲨鱼那样? 在一项
《科学》:细菌能将基因转移到复杂有机体
细菌等微生物之间的横向基因转移(lateral gene transfer)现象频繁发生,这对于它们的进化发展至关重要。美国科学家最新研究发现,细菌也能将基因转移到复杂有机体中去。这将促使科学家重新思考种间基因转移在进化中的作用,也使得遗传学家今后在为新基因组排序时,不得不采用新的方法以过滤掉细菌基
从“无用”到“有用”
美国宾夕法尼亚州立大学的研究人员发现,普通感冒病毒、SARS、肝炎病毒和脑炎病毒等特定类型的病毒都采用一种独特的机制进行复制,揭示了此前人们未能深入了解的病毒聚合酶特定区域的功能。这项研究有望帮助研究人员改进现有疫苗,也为人们提供了疫苗研发的新途径。该研究发表在Structure杂志上。
需要让有机体生物学家解释新的生命树
迅速积累的动物基因的分子序列数据正在推翻一些关于主要的动物群如何进化的标准的动物学叙述。即将发表在《生物科学》8月号上的一篇重要的综述说,这种混乱意味着生物学家应该采纳一些指导方针从而确保他们的进化情境与新的信息保持一致——而惊人数量的情境与新的信息不一致。这篇综述如今以网络先行版的方式提供。
科学家制造出“稳定”的半合成有机体
由美国斯克里普斯研究所领导的一个研究小组近日宣布,他们通过优化人工碱基等途径,制造出“稳定”的半合成有机体,对未来的生物医疗开发具有重要意义,也朝着创造新生命形式迈出重要一步。 “我们让这个半合成有机体更加像生命,”负责这项研究的斯克里普斯研究所教授弗洛伊德·罗梅斯伯格23日在一份声明中说。研
DMF有机体系腐蚀PH计的电极,该怎么办
一般情况下PH计是保存在缓冲溶剂里的啊,只有需要测的时候才拿出来的。有两个标准品用来校正的。
聚合酶的分类
可分为以下几个类群:(1)依赖DNA的DNA聚合酶;(2)依赖RNA的DNA聚合酶;(3)依赖DNA的RNA聚合酶;(4)依赖RNA的RNA聚合酶。前两者是DNA聚合酶,它使DNA复制链按模板顺序延长。如在原核生物中仅就大肠杆菌中已被发现的就有三种(分别简称为PolⅠ,PolⅡ和PolⅢ等);DNA
聚合酶的分类
可分为以下几个类群:(1)依赖DNA的DNA聚合酶;(2)依赖RNA的DNA聚合酶;(3)依赖DNA的RNA聚合酶;(4)依赖RNA的RNA聚合酶。前两者是DNA聚合酶,它使DNA复制链按模板顺序延长。如在原核生物中仅就大肠杆菌中已被发现的就有三种(分别简称为PolⅠ,PolⅡ和PolⅢ等);D
中科院团队研究揭示蚁群组成“超有机体”的分子机制
8日从中科院昆明动物研究所获悉,该所研究员张国捷领衔的中外联合研究团队揭示了蚂蚁群体和多细胞生物在发育和演化上的相似之处,为将蚁群视为超有机体的理论找到了证据支持。相关研究成果于近日在线发表在国际学术期刊《自然-生态与演化》上。 生命的演化充满了从简单到复杂的转变,如从单细胞生物到多细胞生物,
反向聚合酶链反应
中文名称反向聚合酶链反应英文名称inverse PCR;iPCR定 义用于扩增已知序列的DNA旁侧未知序列的方法。即先用在已知DNA序列上没有识别位点的限制内切酶,切出包含已知DNA、而两端带有未知序列的区段,将切出的DNA区段环化,然后再按已知的DNA序列设计一对引物进行扩增。应用学科细胞生物学
聚合酶的功能特性
聚合作用在引物RNA'-OH末端,以dNTP为底物,按模板DNA上的指令由DNApolⅠ逐个将核苷酸加上去,就是DNApolⅠ的聚合作用。酶的专一性主要表现为新进入的脱氧核苷酸必须与模板DNA配对时才有催化作用。dNTP进入结合位点后,可能使酶的构象发生变化,促进3'-OH与5
聚合酶的分类介绍
可分为以下几个类群:(1)依赖DNA的DNA聚合酶;(2)依赖RNA的DNA聚合酶;(3)依赖DNA的RNA聚合酶;(4)依赖RNA的RNA聚合酶。前两者是DNA聚合酶,它使DNA复制链按模板顺序延长。如在原核生物中仅就大肠杆菌中已被发现的就有三种(分别简称为PolⅠ,PolⅡ和PolⅢ等);D
定量聚合酶链反应
中文名称定量聚合酶链反应英文名称quantitative PCR;qPCR定 义将某种已知含量的DNA模板作为内标准进行PCR反应,对待测模板进行定量分析的方法。更灵敏的定量PCR是采用实时PCR方法。应用学科细胞生物学(一级学科),细胞生物学技术(二级学科)
聚合酶链[式]反应
中文名称聚合酶链[式]反应英文名称polymerase chain reaction;PCR定 义通过DNA互补双链解链、退火和聚合延伸的多次循环来扩增DNA特定序列的方法。应用学科细胞生物学(一级学科),细胞生物学技术(二级学科)
DNA聚合酶的特性
良好的热稳定性;70℃ 2h,残留90%活性;93℃ 2h,残留60%活性;94℃ 2h,残留40%活性。5'→3'聚合酶活性,对dATP有优先聚合活性;5'→3'外切酶活性;无3'→5'外切酶活性。
DNA聚合酶的用途
聚合酶链反应(polymerase chain reaction, PCR)。Taq酶扩增的PCR产物,3'末端总是带有1个非模板依赖型的突出碱基,而这个碱基几乎总是A,因为Taq酶对dATP具有优先聚合活性,故可用T载体克隆。
聚合酶的基本特性
聚合作用在引物RNA'-OH末端,以dNTP为底物,按模板DNA上的指令由DNApolⅠ逐个将核苷酸加上去,就是DNApolⅠ的聚合作用。酶的专一性主要表现为新进入的脱氧核苷酸必须与模板DNA配对时才有催化作用。dNTP进入结合位点后,可能使酶的构象发生变化,促进3'-OH与5
RNA聚合酶的特点
RNA聚合酶催化RNA的合成,其与DNA聚合酶有许多相同的催化特点:①以DNA为模板;②催化核苷酸通过聚合反应合成核酸;③聚合反应是核苷酸形成3’,5’一磷酸二酯键的反应;④以3’→5’方向阅读模板,5’→3’方向合成核酸;⑤按照碱基配对原则忠实转录模板序列。
DNA聚合酶的缺点
缺点无3'→5'阅读校正功能,在PCR扩增过程可引起错配,30次循环错配率约0.25%。措施:选择高保真Taq酶,如Pfu。原因:Pfu具有3'→5'外切酶活性。注意:Pfu扩增产物为平末端。
DNA聚合酶的应用
E.coli的DNA pol Ⅰ涉及DNA损伤修复,在半保留复制中起辅助的作用。DNA polⅡ在修复损伤中也具有重要的作用。DNA polⅢ是一种多亚基的蛋白质,在DNA新链的从头合成中起复制酶的作用。复制的忠实性问题会影响到翻译的精确性,这种忠实性主要依赖于碱基的特异性配对。据估计每个碱基对将有
DNA聚合酶的定义
真核细胞有5种DNA聚合酶,分别为DNA聚合酶α(定位于胞核,参与复制引发,不具有5'-3'外切酶活性及3'-5'外切酶活性,有5'-3'聚合酶活性),β(定位于核内,参与高保真度复制,不具有5'-3'外切酶活性,其中疑似存在5
DNA聚合酶的特性
DNA聚合酶有多种,E.coli就有三种。通常DNA聚合酶具有以下共同特点: ①需要DNA模板,因此这类酶又称为依赖DNA的DNA聚合酶;②需要RNA或DNA作为引物(primer),即DNA聚合酶不能从头催化; ③催化dNTP加到引物的3'-OH末端,其速率为1000nt/min,因而DN
RNA聚合酶的类别
通常可根据生物的类别,将RNA聚合酶分为原核生物RNA聚合酶、真核生物RNA聚合酶。原核生物和真核生物的RNA聚合酶有共同特点,但在结构、组成和性质等方面又不尽相同。(1)原核生物RNA聚合酶 研究得最清楚的是大肠杆菌RNA聚合酶。该酶是由五种亚基组成的六聚体(α2ββ'ωσ)分子量约500
DNA聚合酶的功能
1)通过核苷酸聚合反应,使DNA链沿5’→3’方向延长(DNA聚合酶活性)[1] 2)催化由3’端水解DNA链(3’→ 5’核酸外切酶活性,用于切除错配的碱基)[1] 3)催化由5’端水解DNA链(5’→ 3’核酸外切酶活性,用于切除引物)[1] 4)催化由3’端使DNA链发生焦磷酸解
DNA聚合酶的发现
在50年代的中期,A. Kornberg和他的同事们就想到DNA的复制必然是一种酶的催化作用,于是决心分离出这种酶并研究其结构和作用机制。为了达到这个目的,他们分离的蛋白,然后加到体外合成系统中即 同位素标记的dNTP、Mg2+及模板DNA,经过大量的工作,于1956年终于发现了DNA聚合酶Ⅰ(
DNA聚合酶的功能
[1] 聚合作用:在引物RNA'-OH末端,以dNTP为底物,按模板DNA上的指令由DNApolⅠ逐个将核苷酸 加上去,就是DNApolⅠ的聚合作用。 酶的专一性主要表现为新进入的脱氧核苷酸必须与模板DNA配对时才有 催化作用。dNTP进入结合位点后,可能使酶的 构象发生变化,促进3&
关于聚合酶的介绍
1957年,美国科学家阿瑟·科恩伯格(Arthur Kornberg)首次在大肠杆菌中发现DNA聚合酶,这种酶被称为DNA聚合酶I(DNA polymerase I,简称:Pol I)。1970年,德国科学家罗尔夫·克尼佩尔斯(Rolf Knippers)发现DNA聚合酶II(Pol II)。随
RNA聚合酶的作用
RNA聚合酶(RNA polymerase)的作用是转录RNA。有的RNA聚合酶有比较复杂的亚基结构。如大肠杆菌RNA聚合酶有四条多肽链,另有一个促进新RNA分子合成的σ因子,因此它的组成的是α2ββσ。这种结构称为全酶(holoenzyme),除去了σ因子的酶称为核心酶。噬菌体RNA聚合酶则没