两篇Nature发现内含子的新作用:帮助细胞应对压力

一直以来,科学家们对许多真核蛋白编码基因中散布的没有明显生物学功能的非编码DNA片段到底起什么作用感到困惑。这些被称为内含子的序列通常在转录和翻译的时候,从它们的原始序列剪接出来并在蛋白质产生之前迅速被破坏。 1月16日Nature杂志上发表的两项最新研究意外发现了内含子的新作用(至少在酵母中)——许多内含子在剪接后很长一段时间都滞留在细胞中,并且在压力条件下调节细胞生长过程中扮演了重要角色。 伦敦大学学院的遗传学家Jürg Bähler(未参与该项研究)评论说:“这让人非常惊讶和兴奋,像内含子这种通常被认为是废物的东西在饥饿等某些生理条件下,竟然可以起到如此巨大的调节作用。” 自1977年内含子被发现以来,针对它们为什么存在,科学家们已经提出了几种理论,例如,内含子可能可以通过延迟将DNA转化为蛋白质所需的时间,发挥调节基因表达的作用。内含子还帮助选择性剪接,这是一种允许核糖体从单个基因组装多种不同蛋白质的过程。但是......阅读全文

非编码序列内含子子长度多度性((ILPs)

实验概要本实验中运用Perl脚本用于比较Nipponbare和93-11基因组序列,从而开发潜在的ILP标记,通过EPIC-PCR开发候选ILP标记,最后用实验验证及评价了ILP标记。实验步骤1. 水稻釉粳亚种基因组比较搜索ILP我们运用Perl脚本用于比较Nipponbare和93-11基因组序列

细胞化学词汇非编码小RNA

中文名称:非编码小RNA英文名称:small non-messenger RNA;snmRNA定  义:细胞中一大类由几十核苷酸到几百核苷酸组成的、不编码蛋白质的RNA。本身或与蛋白质结合形成的复合体有生物学功能。如核小RNA、核仁小RNA、微RNA、干扰小RNA、时序小RNA等。应用学科:生物化学

Nature:复杂生命难道不需要非编码DNA?

  非编码DNA仅占据丝叶狸藻基因组3%的组成成分,这是否证明了对于复杂生命来说,非编码DNA并不需要呢?   自从科学家们首次发现超过95%的人类基因组是由非编码元件组成以来(非编码元件是指不会编码任何特殊蛋白质的 DNA 片段),他们就一直致力于了解这种所谓的“垃圾” DNA 的作用。在过

非编码DNA可用于开发癌症特异性疫苗

  癌症疫苗,是科学家们五十多年来一直潜心研究的疑难课题,但直到最近的一项研究才得以证明这种疫苗是有效的。  近日,加拿大蒙特利尔大学免疫和癌症研究所(IRIC)的一个研究团队证明了癌症疫苗可以起作用。不仅如此,它还可以成为一种非常有效、非侵入性以及低成本的抗癌工具。这项研究刚发表在《Science

Nature子刊:长非编码RNA可模拟DNA起作用

  长期以来,人们一直认为基因组的大部分区域属于“禁飞区”。这些区域不编码任何蛋白,因此细胞的基因读取机器很少接近。然而近年来科学家们发现,许多非编码序列其实能够转录成RNA,Gas5就是其中之一。  GAS5是一段基因间的长非编码RNA(lincRNA),它来自于非编码的“垃圾DNA”或“基因组的

可以促进癌细胞生长的非编码RNA

国际著名学术期刊《美国国家科学院院刊》发表西奈山伊坎医学院教授Benjamin Greenbaum的一篇研究文章。研究人员在癌细胞中发现了一组可以激发免疫反应的非编码RNA分子,它们具有与病原体相似的一些特征。由于这些分子在癌细胞中表达并扩增,它们造成的免疫反应有可能影响癌细胞的生长。 研究

细胞化学词汇核内含子

中文名称:核内含子英文名称:nuclear intron定  义:存在于核基因中的、隔开外显子的、但转录后须经加工切除的序列。核内含子的5′端和3′端分别具有保守的GT和AG序列,为内含子被剪接除去的识别位点。应用学科:生物化学与分子生物学(一级学科),核酸与基因(二级学科)

结构基因的结构

  人类结构基因4个区域:①编码区,包括外显子与内含子;②前导区,位于编码区上游,相当于RNA5’末端非编码区(非翻译区);③尾部区,位于RNA3’编码区下游,相当于末端非编码区(非翻译区);④调控区,包括启动子和增强子等。基因编码区的两侧也称为侧翼顺序(图3-1)。  1.外显子和内含子 大多

非编码RNA在调节压力恢复过程中具有微调基因表达的作用

  在最近一项研究中,科学家发现非编码RNA在调节压力恢复过程中具有微调基因表达的作用。  当细胞暴露于热或化学胁迫下时,就会形成称为细胞核应激体的细胞器。根据研究人员发表在《EMBO》杂志上的结果,当条件恢复正常时,细胞器会促进称为“内含子(intron)”的RNA片段的保留。  这很重要,因为内

内含子编码核酸内切酶的基本信息

中文名称内含子编码核酸内切酶英文名称intron-encoded endonuclease定  义由含有可读框的内含子编码的一类位点特异性的DNA内切核酸酶,参与内含子由一个含内含子的等位基因转移至另一个不含内含子的等位基因上,能识别后者的特定位点,结合后在特定位点切割,使被转移的内含子的整合位点与

内含子编码核酸内切酶的基本信息

中文名称内含子编码核酸内切酶英文名称intron-encoded endonuclease定  义由含有可读框的内含子编码的一类位点特异性的DNA内切核酸酶,参与内含子由一个含内含子的等位基因转移至另一个不含内含子的等位基因上,能识别后者的特定位点,结合后在特定位点切割,使被转移的内含子的整合位点与

关于内含子的特点介绍

  内含子(introns)在转录后的加工中, 从最初的转录产物除去的内部的核苷酸序列。术语内含子也指编码相应RNA内含子的DNA中的区域。  大多数真核结构基因中的间插序列(intervening sequence)或不编码序列。它们可以转录,但在基因转录后,由这些间插序列转录的部分(也可用内含子

新发现!非编码DNA突变也可引发癌症-|-Nature子刊

  基因与癌症的关系远比人类已了解的更加复杂。近日,美国科学家在一项新研究中鉴定出了近200个在不同的癌症中发挥作用的非编码DNA突变。   image.png   图片来源:Nature Genetics(doi:10.1038/s41588-018-0091-2)   在人类基因组中,有9

新发现!非编码DNA突变也可引发癌症-|-Nature子刊

  基因与癌症的关系远比人类已了解的更加复杂。近日,美国科学家在一项新研究中鉴定出了近200个在不同的癌症中发挥作用的非编码DNA突变。   图片来源:Nature Genetics(doi:10.1038/s41588-018-0091-2)   在人类基因组中,有98%的信息是看似无用的“垃

“垃圾DNA”或是编码DNA的“保镖”

"垃圾DNA"的概念源自上世纪70年代,用来形容基因组中不是编码蛋白质的DNA序列,在学术上被称为非编码DNA序列。 非编码DNA"开关说"究竟是个啥? 科学家们发现,人类基因组中包含多达400万个基因开关和功能调节因子,它们的载体便是"垃圾DNA"。这强烈地冲击了"DNA序列=生物性

“垃圾DNA”或是编码DNA的“卫士”

   “垃圾DNA”的概念是在上世纪70年代提出来的,用来形容那些基因组中不是编码蛋白质的DNA序列,而在学术上被称为非编码DNA序列。  由于当时的科学家普遍认为有生物学意义的蛋白质才是决定生物性状的关键,而且也没有一种好的理论和技术手段来解释这些“垃圾”存在的原因,于是“垃圾DNA”这一观念便形

内含子的特点

特点内含子(introns)在转录后的加工中, 从最初的转录产物除去的内部的核苷酸序列。术语内含子也指编码相应RNA内含子的DNA中的区域。大多数真核结构基因中的间插序列(intervening sequence)或不编码序列。它们可以转录,但在基因转录后,由这些间插序列转录的部分(也可用内含子这个

内含子的开放续框中编码产生的蛋白介绍

(1)核酸内切酶:在DNA的靶位点剪切,使内含子得以插入;(2)反转录酶:涉及将内含子RNA变成DNA拷贝;(3)成熟酶:从前体的RNA中切掉内含子的部分。

关于真核基因组的基本信息介绍

  真核基因组由一条或多条线性DNA染色体组成。组成真核生物基因组的染色体的数量差异很大,杰克跳线蚂蚁和无性线虫的基因组每个只有一对染色体 [6],而蕨类物种有720对染色体 [7]。人类细胞具有22对常染色体和1对性染色体。  除了细胞核中的染色体外,真核生物的细胞器如叶绿体和线粒体都有自己的DN

非编码区的作用

非编码区虽然不能编码蛋白质,但对于遗传信息表达是不可缺少的。在它上面有调控遗传信息表达的核苷酸序列,是有遗传效应的。比如RNA聚合酶结合位点。非编码区对目的基因是不可缺少的。非编码区上有与RNA聚合酶的结合位点,具有调控作用。基因非编码区的碱基的插入、缺失和替代也属于基因突变事件,尽管大多数的研究是

非编码区的定义

基因是由成千上万个核苷酸对组成。组成基因的核苷酸序列可以分为不同区段。在基因表达的过程中,不同区段所起的作用不同。能够转录为相应信使RNA,进而指导蛋白质合成(也就是能编码蛋白质)的区段叫做编码区。不能编码蛋白质的区段叫做非编码区。非编码区位于编码区前后,同属于一个基因,控制基因的表达和强弱 。

Cell惊人发现:谁说非编码RNA不编码?

  来自德克萨斯大学西南医学中心的Eric Olson和同事们在分析梳理肌肉特异性的长链非编码RNAs(lncRNAs)以了解它们的功能时,发现了一种在骨骼肌中特异性表达的lncRNA。尽管这一RNA以往被归类为是非编码RNA,它的序列中包含的一小段却看上去好像一个编码区域。这一研究发现发布在《细胞

特殊RNA或是小胖威利症元凶沪科学家找出可能病因

  婴儿期容易发烧、进食无节制,长大后智力低下、不育――每1.5万人中就可能出现1个患者的染色体疾病小胖威利症,病因何在?这个困扰了医学界多年的问题,最近有了新进展。   中科院上海生科院生化与细胞所的陈玲玲研究员带领课题组,发现了一种新型长非编码RNA,并通过实验证明,这种RNA的缺失,很可能就

真核生物基因组1

真核生物的基因组比较庞大,并且不同生物种间差异很大,例如人的单倍体基因组由3.16×109 bp组成。在人细胞的整个基因组中实际上只有很少一部份(约占2%~3%)的DNA序列用以编码蛋白质。 第一节 真核生物基因组特点 真核生物体细胞内的基因组分细胞核基因组与细胞质基因组,细胞核基因

概述割裂基因的由来

  现在割裂基因的原始形式是怎样的呢? 有两种模型,“内含子占先(Introns early)”模型支持内含子总是基因的整体部分。认为基因起始于割裂的结构,没有内含子的基因是在进化过程中丢失的。“内含子滞后(Introns late)”模型认为原始蛋白质编码单位由非割裂的DNA 序列组成,内含子是随

p53基因结构及表达

  P53基因在人类、猴、鸡和鼠等动物中相继发现后,对其进行了基因定位,人类 P53基因定位于17P13.1,鼠P53定位于11号染色体,并在14号染色体上发现无功能的假基因,进化程度迥异的动物中,P53有异常相似的基因结构,约20Kb长,都由11个 外显子和10个内含子组成,第1个外显子不编码,外

p53基因的结构及表达

P53基因在人类、猴、鸡和鼠等动物中相继发现后,对其进行了基因定位,人类 P53基因定位于17P13,鼠P53定位于11号染色体,并在14号染色体上发现无功能的假基因,进化程度迥异的动物中,P53有异常相似的基因结构,约20Kb长,都由11个 外显子和10个内含子组成,第1个外显子不编码,外显子2、

关于p53基因的结构及表达介绍

  P53基因在人类、猴、鸡和鼠等动物中相继发现后,对其进行了基因定位,人类 P53基因定位于17P13,鼠P53定位于11号染色体,并在14号染色体上发现无功能的假基因,进化程度迥异的动物中,P53有异常相似的基因结构,约20Kb长,都由11个 外显子和10个内含子组成,第1个外显子不编码,外显子

关于真核基因组的基本信息介绍

  真核基因组:由真核基因编码的以及感染真核生物的DNA和RNA病毒编码的基因组。  真核生物的基因组一般比较庞大,例如人的单倍体基因组由3×106 bp碱基组成,按1000个碱基编码一种蛋白质计,理论上可有300万个基因。但实际上,人细胞中所含基因总数大概会超过10万个。这就说明在人细胞基因组中有

细胞肌动蛋白的遗传性能

结构蛋白的主要相互作用是基于钙粘蛋白的粘附连接。肌动蛋白丝通过纽 蛋白与α- 肌动蛋白和膜连接。 纽蛋白的头部结构域通过α-连环蛋白 , β-连环蛋白和γ-连环蛋白与E-钙粘蛋白结合 。 纽蛋白的尾部结构域与膜脂质和肌动蛋白丝结合。肌动蛋白是整个进化过程中最高度保守的蛋白质之一,因为它与大量其他蛋白