G蛋白偶联受体调控中的关键蛋白

Johns Hopkins大学的科学家发现了一个“脚手架”蛋白,它将复杂的痛觉调控系统中的多种蛋白聚集在一起,包括Homer、蛋白激酶和mGluR,该发现发表在Nature Neuroscience杂志上。这一调控系统与多种神经病和神经性疾病有关,为治疗这些棘手的疾病提供了新靶点。 Johns Hopkins大学医学院神经学教授Paul Worley对位于神经细胞表面的I型mGluR代谢型谷氨酸受体家族进行了研究。I型mGluR包括mGluR1和mGluR5,是在大脑和脊髓中表达的G蛋白偶联受体GPCR。当这些受体锁住神经元用以通讯的谷氨酸时,就会使神经元激活。 如果不能关闭这些受体,神经元就会一直处于活跃状态,使痛感及其他反应持续的时间过长。此前有研究显示,这些mGluR需要结合Homer蛋白来关闭,并且在蛋白激酶使受体结合位点磷酸化后,这种结合更强。然而,人们并不了解这些不同分子是如何聚集到一起的......阅读全文

GABA能神经元和谷氨酸能神经元在电针镇痛效应...(二)

激活vlPAG中GABA能神经元和抑制谷氨酸能神经元可以有效拮抗电针的镇痛效应单独激活GABA能神经元只能部分的减弱电针的镇痛效应,为了验证GABA能神经元和谷氨酸能神经元都参与了电针的镇痛效应。研究团队在vlPAG中GABA能神经元被激活的基础上,另外使用rAAV-CaMKIIa-HA-KORD-

GABA能神经元和谷氨酸能神经元在电针镇痛效应...(一)

GABA能神经元和谷氨酸能神经元在电针镇痛效应中的新机制研究背景:电针镇痛效应目前已经在世界范围内得到了广泛认可,但其在中枢神经系统的确切靶点和细胞特异性的镇痛机制仍然没有得到充分的认识。[1-3]。已有研究证实,电针可以诱导c-fos在中脑导水管周围灰质(periaqueductal gray

G蛋白偶联受体调控中的关键蛋白

  Johns Hopkins大学的科学家发现了一个“脚手架”蛋白,它将复杂的痛觉调控系统中的多种蛋白聚集在一起,包括Homer、蛋白激酶和mGluR,该发现发表在Nature Neuroscience杂志上。这一调控系统与多种神经病和神经性疾病有关,为治疗这些棘手的疾病提供了新靶点。  

Nature:神秘神经元打开睡眠开关

  每个果蝇有大约二十几个睡眠控制神经元,人们也在其他动物中发现了这些脑细胞并相信它们也存在于人体中。这些神经元传送了睡眠同态调节器的输出信息:如果这些神经元电活化,果蝇会睡着;当它们沉默时,果蝇醒着。  那么是什么打开了大脑中的这个开关呢?我们知道,睡眠受到两个系统——生物钟和睡眠同态调节器(ho

GABA能神经元和谷氨酸能神经元在电针镇痛效应中新机制

  研究背景:   电针镇痛效应目前已经在世界范围内得到了广泛认可,但其在中枢神经系统的确切靶点和细胞特异性的镇痛机制仍然没有得到充分的认识。[1-3]。已有研究证实,电针可以诱导c-fos在中脑导水管周围灰质(periaqueductal gray, PAG)中特异性表达[4],腹外侧中脑导水管

GABA能神经元和谷氨酸能神经元在电针镇痛效应中新机制

  电针镇痛效应目前已经在世界范围内得到了广泛认可,但其在中枢神经系统的确切靶点和细胞特异性的镇痛机制仍然没有得到充分的认识。[1-3]。已有研究证实,电针可以诱导c-fos在中脑导水管周围灰质(periaqueductal gray, PAG)中特异性表达[4],腹外侧中脑导水管周围灰质(vent

Nature:发现运动神经元新作用

  一项2016年1月13日发表于《Nature》期刊的新研究可能改变对运动神经元作用的看法。运动神经元是从脊髓延伸到肌肉和其他器官的神经细胞,一直被认为是中间神经元回路信号的被动接受者。然而现在,来自卡罗林斯卡学院(Karolinska Institutet)的研究人员们表明,运动神经元会通过一种

Nature惊人发现:神经元通讯无需突触

  十一月二十一日的Nature杂志上发表了一项新研究,显示果蝇触须中相邻的嗅觉神经元可以相互阻断,即使二者并没通过突触直接相连。这种通讯手段被称为ephaptic coupling,神经元通过电场使其邻居沉默,而不是通过突触传递神经递质。   “Ephaptic coupling这一理论

Nature子刊:代谢调控神经元活性

  饮食疗法可以控制许多癫痫患者的发病,此前人们一直不清楚这种治疗的作用机理。日前,McGill大学和Zurich大学的科学家们找到了答案,他们发现大脑细胞信号传递的能力与细胞的代谢有直接联系。这项研究于一月十六日发表在Nature Communications杂志上。   神经学研究者们往往

Nature重磅:神经元竟促进脑瘤细胞生长!

  在一项新的研究中,来自德国海德堡大学等研究机构的研究人员描述了大脑中的神经元如何与侵袭性胶质母细胞瘤建立连接从而触发肿瘤生长。这种新的肿瘤激活机制为临床试验提供了起点。相关研究结果于2019年9月18日在线发表在Nature期刊上,论文标题为“Glutamatergic synaptic inp

Nature子刊讲述神经元的秘密生活

  人体的神经连接并不是一成不变的,神经细胞为了执行特定功能,往往需要对轴突进行修剪。轴突是神经元起作用的一端,负责将冲动传递到组织或其他神经元。神经元采用一类特殊的分子来切断轴突,如果这类分子没有受到正确控制,就会导致整个细胞的死亡。   神经元是如何启动轴突自毁,并同时确保自毁机制不影响细胞的

研究发现谷氨酸能神经元对睡眠稳态调节的重要作用

  9月4日,《科学》杂志发表题为Regulation of sleep homeostasis mediator adenosine by basal forebrain glutamatergic neurons的研究论文。该研究由中国科学院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑

Nature突破传统观点:移植神经元的融合

  移植胚胎神经细胞可以连接到发育好了的成年小鼠视觉皮层上,并且随时间发展,促进它们对视觉线索的敏感度。这一研究成果公布在10月26日的Nature杂志上。这项研究打破了之前认为大脑无法自我修复的观点,证明了移植胚胎神经元能重建受损的成年小鼠大脑中的回路,并恢复其功能。  来自法国国家健康研究所和医

Nature封面:光遗传学解析关键神经元

  科学家们通过光遗传学技术,解析了两种帮助脊髓控制技巧性前肢运动的神经元:第一种是运动精确性所需的兴奋性中间神经元,第二种是运动流畅性所需的抑制性中间神经元。这一重要成果先后以两篇文章的形式发表,并且登上了本期的Nature杂志的封面。这些发现有助于人们进一步理解人类的运动功能,并在此基础上治疗创

Nature突破传统观点:移植神经元的融合

移植胚胎神经细胞可以连接到发育好了的成年小鼠视觉皮层上,并且随时间发展,促进它们对视觉线索的敏感度。这一研究成果公布在10月26日的Nature杂志上。这项研究打破了之前认为大脑无法自我修复的观点,证明了移植胚胎神经元能重建受损的成年小鼠大脑中的回路,并恢复其功能。来自法国国家健康研究所和医学研究院

最新研究揭示谷氨酸能神经元对睡眠稳态调节的重要作用

  睡眠稳态是睡眠持续时间与清醒之间的平衡,是睡眠-觉醒周期的基本特征。在清醒期间,促进睡眠的促眠因素积聚并导致睡眠压力增加或我们需要睡眠。数十年的研究已经确定了许多与睡眠稳态有关的基因、分子和生化过程。在与睡眠稳态有关的各种过程中,腺苷是细胞代谢途径的重要组成部分,是睡眠稳态的重要生理介质。在基底

Nature:揭示伟哥通过抑制蛋白激酶G治疗心脏病机制

  当正常的细胞在体内生长、进行分裂或执行任何其他任务时,它们会对大量的内部传感器做出反应,这些传感器测量营养物和能量供应,并根据环境线索告知细胞外面发生了什么。一种称为mTOR的蛋白从这些信号中接收信息,然后指示细胞采取行动。如今,在一项新的研究中,根据来自细胞和小鼠的数据,来自美国约翰霍普金斯大

Nature:科学家阐释运动神经元新角色

  刊登在国际杂志Nature上的一项研究报告中,来自瑞典卡罗琳学院 (Karolinska Institutet)的科学家揭示了运动神经元的新角色,运动神经元可以脊髓延伸到肌肉和其他器官中,而且其一直被认为被动接收来自神经元回路内部的信号,本文中研究人员就发现了一种通过运动神经元的新型直接的信号通

Nature子刊:14天让干细胞变身神经元

  支配着肌纤维的运动神经元是运动活动的必要条件。在许多疾病中,运动神经元退化是导致患者瘫痪和死亡的重要原因。来自法国巴黎干细胞疗法及单基因疾病研究所(I-Stem  -Inserm/AFM/UEVE)的研究人员,与法国国家科学研究院(CNRS)和巴黎笛卡尔大学合作近期开发出了一种新的方法,其能够在

Nature子刊:活体细胞重编程生成神经元

  神经胶质细胞是人类中枢神经系统中的一类神经细胞,它们并不像神经元那样传导电冲动,长期以来被认为只起支持作用。直到近些年来,科学家们才开始认识到神经胶质细胞(尤其是星形胶质细胞)在大脑中的调节作用。有研究显示,星形胶质细胞能够保护神经细胞,并为其提供养分。在人类大脑中,有超过三分之一的细胞是星形胶

Nature重要成果-解析神经元的超快内吞

  神经细胞通过小囊泡相互传递神经信号,犹他大学和德国生物学家合作,发现神经细胞循环利用这些囊泡的新机制。研究显示,与此前提出的两种回收机制相比,新机制要快得多。文章于十二月四日发表在Nature杂志上。   在小鼠脑细胞释放神经信号时,研究人员将其快速冷冻,并通过电镜对脑细胞成像。他们发现,小囊

Nature子刊:不一样的神经元修剪

  树苗不修剪,难成栋梁材,因此对于园丁来说,树木只有定期修剪,去掉某些枝条,剩下的才能长得更好。同样在发育期间,神经元生长与修剪也是必需的,来自Salk生物科学研究所的Rusty Gage等人发现成体小鼠中新生成的大脑细胞,之后会得到修剪。  这一研究成果公布在5月2日的Nature Neuros

Nature:大脑基因表达图谱和神经元联系图谱绘制完成

2013年4月2日奥巴马政府公布“脑计划”,现在一年过去,脑计划出了两项突破性成果:科学家绘制出哺乳动物大脑中完整的基因表达图谱和神经元联系图谱        在美国总统巴拉克·奥巴马宣布了“使用先进革新型神经技术的人脑研究”(BRAIN)计划 1 年后,《自然》杂志于4月3日发表了两项研究,介

Nature:在神经元中发现了DNA损伤的“热点”

  在一项研究中,来自美国国立卫生研究院(NIH)的研究人员发现了神经元DNA内积累一种类型的损伤——单链断裂(SSBs)的特定区域。这种SSBs的积累似乎是神经元所特有的,它挑战了人们对DNA损伤的原因及其在神经退行性疾病中的潜在影响的普遍理解。  神经元(紫色标记)显示出活跃的DNA修复过程(黄

Nature:神经元能刺激胃癌,促进癌细胞生长和扩散

研究人员发现,胃癌与附近的感觉神经建立电连接,并利用这些恶性回路刺激癌症的生长和扩散。这是第一次发现神经和大脑外的癌症之间存在电接触,这增加了许多其他癌症通过建立类似联系而发展的可能性。这项研究公布在2月19日的Nature杂志上,南通大学附属医院胃肠外科副主任医师、副教授支小飞作为唯一第一作者,美

Nature-Communications已实现超声波精确刺激单个神经元

  在最新一期的《Nature Communications》在线报告了一个新方法,它显示了一个线虫的单个神经元何以可通过基因修饰和微泡的使用被超声波刺激。作者希望,这一方法将使得对深层组织中的神经元刺激能够以比现有基于光的方法(如光遗传学方法)创伤更小的方式进行。  用来激活神经元或使其失活的当前

中国专家找到引起缺血性卒中脑损伤的“元凶”

中新网上海7月11日电 (陈静顾卓敏)缺血性脑卒中已成为影响中国民众健康主要的疾病之一。记者11日获悉,中国医学专家团队的最新研究发现,ASICs(酸敏感离子通道)是引起缺血性卒中脑损伤的“元凶”并阐明致病机制。上海交通大学医学院附属第六人民医院殷善开/时海波教授团队的研究成果刊登在最新一期《自然》

中国专家找到引起缺血性卒中脑损伤的“元凶”

缺血性脑卒中已成为影响中国民众健康主要的疾病之一。记者11日获悉,中国医学专家团队的最新研究发现,ASICs(酸敏感离子通道)是引起缺血性卒中脑损伤的“元凶”并阐明致病机制。  上海交通大学医学院附属第六人民医院殷善开/时海波教授团队的研究成果刊登在最新一期《自然》(Nature)上,可为早期干预缺

Nature:揭示乳腺癌向大脑转移新机制

  在2018年,乳腺癌是全球女性中最常见的癌症,约占报道的所有癌症的四分之一。当乳腺癌发生转移时,大脑是常见的目的地。  乳腺癌脑转移(breast-to-brain metastases, B2BM)的高发生率使得科学家们猜测乳腺癌细胞向大脑中迁移并播种肿瘤是有内在原因的。阐明这一内在原因可能会

Nature:强力突触揭示了大脑中的机械相互作用

  大脑中神经元之间的通信通常与电化学信号传导有关。在这里,我们揭示了神经元也可以通过树突棘扩大产生的力进行交流。这种力与肌肉收缩相当,可能是学习和记忆的基础,这表明大脑功能比以前想象的更机械。图1:通过精细推动突触前末端来增强谷氨酸释放  This is a summary of: Ucar, H