Nature封面:光遗传学解析关键神经元
科学家们通过光遗传学技术,解析了两种帮助脊髓控制技巧性前肢运动的神经元:第一种是运动精确性所需的兴奋性中间神经元,第二种是运动流畅性所需的抑制性中间神经元。这一重要成果先后以两篇文章的形式发表,并且登上了本期的Nature杂志的封面。这些发现有助于人们进一步理解人类的运动功能,并在此基础上治疗创伤或疾病引起的运动障碍。 “接球和抛硬币看起来一点也不费力,实际上它们依赖于复杂而精细的神经网络,涉及大脑、脊髓和肌肉,”文章的资深作者,哥伦比亚大学的Thomas M. Jessell教授说。 把手移动到特定位置,需要大脑向脊髓发送信号,激活控制上肢肌肉的运动神经元。在运动过程中,肌肉的感知信息被传回大脑和脊髓形成反馈体系,允许对运动进行控制和调节。“不过精确运动需要实时微调,而肌肉的反馈还不够快,”Dr. Jessell说。 研究人员推测,应该还存在一种快速的反馈形式,而这种反馈很可能来自颈脊髓的一群中间神经元——PN(pr......阅读全文
超声波发生器的反馈信号相关
完善的超声波发生器有反馈环节,主要提供以下二个方面的反馈信号。 输出功率 当超声波发生器接入电压的发生变化时,发生器的输出功率也随着发生变化。会使超声波换能器的机械振动不稳定,导致工作效果不佳。因此需要稳定输出功率,通过功率反馈信号相应调整功率放大器,使得功率放大稳定。 频率跟踪 换能器
Cell-reports:-反馈性抑制CREB信号促进胰岛素抵抗
近日来自美国的研究人员在国际期刊cell reports发表了他们一项最新研究成果。他们通过研究发现CREB信号通路能够通过诱导转录因子MafA表达促进胰岛素分泌,在慢性高血糖症过程中,因PKIB表达上调,抑制了β细胞的CREB活性,进而影响了MafA表达,导致β细胞功能损伤。 研究人员指出,
反馈抑制与反馈阻遏的区别
反馈抑制与反馈阻遏的区别在于:反馈阻遏是转录水平的调节,产生效应慢,反馈抑制是酶活性水平调节,产生效应快。此外,前者的作用往往会影响催化一系反应的多个酶,而后者往往只对是一系列反应中的第一个酶起作用。
反馈抑制与反馈阻遏的区别
反馈抑制与反馈阻遏的区别在于:反馈阻遏是转录水平的调节,产生效应慢,反馈抑制是酶活性水平调节,产生效应快。此外,前者的作用往往会影响催化一系反应的多个酶,而后者往往只对是一系列反应中的第一个酶起作用。
大脑神经元的自反馈机制启发更好的类脑人工智能
原文地址:http://news.sciencenet.cn/htmlnews/2022/9/486144.shtm 近日,中国科学院自动化研究所类脑智能研究中心研究员曾毅团队在《神经网络》上发表了一项新研究,研究将来自生物脑神经元自身反馈以及兴奋抑制性神经元平衡的启发,融入类脑脉冲神经网络的理
西门子6dr阀门定位器不同反馈信号位置调整
许多用户在使用西门子6dr阀门定位器时,会对其反馈模块的使用有一些疑惑和问题。下面介绍阀门定位器智能模块在使用时的不同反馈信号位置调整。1、反馈信号4mA(0%)位置调整调整EP端输入信号大小,使阀门处于需要反馈4mA信号(即0%)的位置。按“+”或“—”键调整电流,使电流值符合要求,然后按一下最右
研究发现新信号通路填补神经元成熟机制空白
Scripps研究所(TSRI)的神经学家们,发现了建立神经元连接的一个新信号通路,填补了神经元成熟机制中的重要空白,文章于六月二十日发表在Cell杂志上。这项研究能够帮助人们更好的理解,一些与大脑发育有关的疾病。 在哺乳动物的大脑发育过程中,建立神经元连接是一个基本步骤。现在,科学家们发
扫描隧道显微镜与原子力显微镜的反馈信号异同
1.扫描隧道显微镜(STM)的feedback signal是tunneling current(隧道电流) 这是一种基于量子隧道效应的现象一探针针尖的波函数和基底原子之间的波函数在距离极近时相互叠加,可以让电子突破能垒,发生电子转移,从而在针尖和基底之间形成隧道电流。 电流大小与针尖和
什么是反馈抑制?
反馈抑制(feedback inhibition),是指最终产物抑制作用,即在合成过程中有生物合成途径的终点产物对该途径的酶的活性调节,所引起的抑制作用。
AFM反馈系统
反馈系统在原子力显微镜/AFM的系统中,将信号经由激光检测器取入之后,在反馈系统中会将此信号当作反馈信号,作为内部的调整信号,并驱使通常由压电陶瓷管制作的扫描器做适当的移动,以保持样品与针尖保持一定的作用力。AFM系统使用压电陶瓷管制作的扫描器精确控制微小的扫描移动。压电陶瓷是一种性能奇特的材料,当
AFM反馈系统
反馈系统在原子力显微镜(AFM)的系统中,将信号经由激光检测器取入之后,在反馈系统中会将此信号当作反馈信号,作为内部的调整信号,并驱使通常由压电陶瓷管制作的扫描器做适当的移动,以保持样品与针尖保持一定的作用力。
反馈抑制的类型
多价反馈抑制分支代谢途径中的多个终产物每一个单独过量时对共同途径中较早的一个酶不产生抑制作用,因而并不影响整个代谢进度,只有多个终产物同时过量才会对关键酶产生抑制作用。协同反馈抑制协同反馈抑制与多价反馈抑制相同的是要多个终产物同时过量才会对关键酶产生抑制作用。两者的不同点单一终产物过量时协同反馈抑制
反馈环的定义
中文名称反馈环英文名称feedback loop定 义系统在输出端通过一定通道反送到输入端,所形成的闭合的回路。应用学科生态学(一级学科),生态系统生态学(二级学科)
什么是反馈抑制?
反馈抑制(feedback inhibition),是指最终产物抑制作用,即在合成过程中有生物合成途径的终点产物对该途径的酶的活性调节,所引起的抑制作用。
Nat-Methods多巴胺感受器揭示神经元释放的化学信号
近日,加州大学戴维斯分校健康分校的团队开发了一种名为“dLight1”的基于荧光蛋白的生物传感器。这一种高特异性传感器可检测多巴胺,即神经元释放的一种可向其他神经细胞发送信号的化学分子。与先进的显微镜结合使用时,dLight1可提供高分辨率,实时成像的活体动物多巴胺时空释放特征。 在9月7日发
科学家解析生物钟“早晨复合体”反馈调控远红光信号机制
植物作为固着生物,依赖其内源生物钟感知和预测因地球自转而产生的环境信号昼夜周期性变化,从而协调自身生长与发育进程。远红光受体光敏色素phyA在黎明时分被迅速激活,诱导大量基因表达并驱动显著的生理转变,因此被称为“黎明感受器”。有研究发现,phyA在时间维度的表达受到生物钟系统的严格调控,但生物钟介导
协同反馈抑制的概念
协同反馈抑制,一个有两个或者两个以上末端产物的酶促反应中,两个末端产物的混合物引起的抑制作用要大于任何一个末端产物以相同总比浓度单独存在时的抑制作用。
什么是协同反馈抑制?
协同反馈抑制,一个有两个或者两个以上末端产物的酶促反应中,两个末端产物的混合物引起的抑制作用要大于任何一个末端产物以相同总比浓度单独存在时的抑制作用。
视黄醛的视觉反馈原理
黄醛英文:retinaldehyde。亦称视黄醛1、维生素A醛,但统称视黄醛。除全顺式化合物外,有5种异构体,其中重要的是11-顺式,维生素A是变成这种形式与视蛋白结合。在网膜中这种11-顺式-视黄醛是由全反式视黄醛或11-顺式视黄醇(新维生素Ab)经酶反应生成的 。视网膜感觉细胞中所含的视色素。食
Nature封面:光遗传学解析关键神经元
科学家们通过光遗传学技术,解析了两种帮助脊髓控制技巧性前肢运动的神经元:第一种是运动精确性所需的兴奋性中间神经元,第二种是运动流畅性所需的抑制性中间神经元。这一重要成果先后以两篇文章的形式发表,并且登上了本期的Nature杂志的封面。这些发现有助于人们进一步理解人类的运动功能,并在此基础上治疗创
微型人造大脑首次产生类似早产儿脑电波信号、神经元
当扁豆大小的神经细胞在实验室培养皿中生长时,它们开始发出有节奏的电信号。在《细胞干细胞》近日发表的一项研究中,研究人员发现,从人类干细胞中培育的大脑类器官产生的脑电波,随着发育的进展变得更加复杂,并在微型大脑中形成功能神经回路。而且这些脑电波与人类婴儿发育大脑中的某些特征相同。 科学家们用发育
深入剖析单一神经元或能阐明大脑回路的信号问题!
自闭症对世界儿童健康影响颇深,患病比例大约为1/59,这给患者、父母及其护理人员都带来了极大的挑战,然而更为糟糕的是,至今并没有药物来治疗自闭症,这在很大程度上因为我们并不清楚自闭症发生及其改变正常大脑功能的机制,难以破解引发疾病的过程的一大主要原因是自闭症往往变化很大,那么我们应该如何理解自闭
黄海博士等报道非神经元细胞之间的类突触信号传导
生物体的基本单位是细胞,细胞之间是如何交流信息一直是科学家们关心的问题。虽然动物身体中几乎所有细胞都与周围细胞交流,但许多科学家认为只有构成大脑和神经系统的神经元细胞才能通过突触连接完成直接长距离传输和接收信号的任务,而非神经元细胞主要是将信号蛋白分泌到细胞外空间中,通过扩散到达靶细胞。 神经
研究发现:触觉和运动神经元能对视觉信号起反应
据物理学家组织网近日报道,美国杜克医学院的科学家通过动物实验发现,大脑的触觉和运动神经元除了能感知接触、控制运动以外,还能对视觉信号起反应。这一发现不仅解释了“橡胶手错觉”,帮人们理解不同脑区共同形成身体图式的机制,还有助于开发与瘫痪病人体觉和运动神经线路完全融和的神经假肢。相关论文发表于美国《
关于视觉反馈原理的介绍
黄醛英文:retinaldehyde。亦称视黄醛1、维生素A醛,但统称视黄醛。除全顺式化合物外,有5种异构体,其中重要的是11-顺式,维生素A是变成这种形式与视蛋白结合。在网膜中这种11-顺式-视黄醛是由全反式视黄醛或11-顺式视黄醇(新维生素Ab)经酶反应生成的 。视网膜感觉细胞中所含的视色素
吸食大麻损伤大脑反馈回路
吸大麻会带给你美妙的感觉,但长时间吸食大麻却会起到反效果。研究人员已经发现,大麻吸食者的大脑对化学品多巴胺(负责制造愉快和奖励的感觉)反应不那么强烈。由于对多巴胺反应迟钝,重度大麻吸食者可能过着一种“云里雾里”的生活。 在美国的科罗拉多州、华盛顿州和乌拉圭,大麻已经“高调”合法化。然而,针对大
影响食欲的神经反馈机制
我们为何会对某些食物产生厌恶情绪?这是因为从肠道到大脑的信号导致了这种反感情绪的产生。 传统观点认为,大脑中存在一种抑制进食的回路-它来自胃部,如果过分激活它会使人们感到不适。 现在,一项细胞代谢研究在小鼠中发现了第二条回路。密歇根州营养肥胖症研究中心主任Randy Seeley博士以及研究
反馈抑制的主要类型介绍
多价反馈抑制分支代谢途径中的多个终产物每一个单独过量时对共同途径中较早的一个酶不产生抑制作用,因而并不影响整个代谢进度,只有多个终产物同时过量才会对关键酶产生抑制作用。协同反馈抑制协同反馈抑制与多价反馈抑制相同的是要多个终产物同时过量才会对关键酶产生抑制作用。两者的不同点单一终产物过量时协同反馈抑制
近红外电压纳米探针助力神经元电信号在体成像
群体神经元活动的在体检测是揭示神经系统功能机制的关键。研发高灵敏的并可用近红外光激发的电压敏感探针,已成为当前国际神经科学领域重点攻克的技术难关之一。中国科学院脑科学与智能技术卓越创新中心/神经科学研究所杜久林研究团队与中国科学院上海硅酸盐研究所施剑林、步文博研究团队合作研发了一种可用近红外光激
Neuron:发现产生老年痴呆症的神经元信号丢失途径
梅奥诊所研究人员发现一个关键的细胞信号转导通路,其会促进阿尔茨海默氏症患者大脑中有毒蛋白生产过剩,以及神经元之间“通讯”的丢失,而毒蛋白和通讯丢失是阿尔茨海默氏症患者的两大致病因素。 他们的研究发表在Neuron杂志上,提示了用药物针对这个特定的缺陷,可能有助防止阿尔茨海默氏症。 研究员Gu