Nature子刊:绿藻光系统I高效捕获及传递光能的分子机制

放氧光合作用利用太阳能产生氧气及碳水化合物,为地球上几乎全部生物提供生存的基础。放氧光合生物(包括植物、真核藻类和蓝藻)有两个光系统,分别是光系统I(PSI)和光系统II(PSII)。 植物和藻类中的光系统I是由核心复合物和外周的捕光蛋白复合物(LHCI)组成的多亚基膜蛋白-色素复合物,其通过外周天线吸收光能,传递到核心,驱动电子传递,并最终将电子提供给ferredoxin生成NADPH。在进化过程中,不同物种的PSI核心是相对保守的,但外周捕光天线系统差异很大,尤其是绿藻的光系统I的外周天线系统更为多变。对绿藻模式生物莱茵衣藻的研究表明,其光系统I的天线系统相比于其它真核藻类和植物来说更大也更为复杂,可能结合多达10个捕光天线蛋白,而高等植物的光系统I核心只稳定结合4个LHCI,低等红藻光系统I中也只有3或5个天线蛋白。 研究表明,虽然衣藻PSI-LHCI的捕光天线系统更为庞大,但它与植物PSI-LHCI具有相似的平......阅读全文

Nature子刊:绿藻光系统I高效捕获及传递光能的分子机制

   放氧光合作用利用太阳能产生氧气及碳水化合物,为地球上几乎全部生物提供生存的基础。放氧光合生物(包括植物、真核藻类和蓝藻)有两个光系统,分别是光系统I(PSI)和光系统II(PSII)。  植物和藻类中的光系统I是由核心复合物和外周的捕光蛋白复合物(LHCI)组成的多亚基膜蛋白-色素复合物,其通

生物物理所-绿藻光系统I高效捕获及传递光能的分子机制

  3月8日,Nature Plants 杂志在线发表了中国科学院生物物理研究所常文瑞/李梅研究组与章新政研究组的合作研究成果,题为Antenna arrangement and energy transfer pathways of a green algal photosystem I-LHCI

如何实现高效捕光?我国学者在Nature发表最新结果

  国际学术期刊《自然-植物》(Nature Plants)在线发表了题为Structural insight into light harvesting for photosystem II in green algae 的论文,该项工作由中国科学院生物物理研究所柳振峰课题组和日本国立基础生物学研

绿藻竟然利用这种超分子实现光捕获

  11月25日,国际学术期刊《自然-植物》(Nature Plants)在线发表了题为Structural insight into light harvesting for photosystem II in green algae 的论文,该项工作由中国科学院生物物理研究所柳振峰课题组和日本国

植物所等-绿藻光系统I超级复合物结构解析方面取得进展

  光合生物的光系统I(PSI)是一个极高效率的光能吸收和转化系统,几乎每一个吸收的光子都能产生一个电子,其量子转化效率超过90%。因此PSI高效吸能、传能和转能的结构基础受到科学家的广泛关注。目前,原核生物蓝藻、真核生物红藻和高等植物PSI超级复合物结构都已被解析,然而绿藻PSI的高分辨率结构长期

解析绿藻光合状态转换超分子复合体的三维结构

  光合作用作为重要的物质和能量转化过程,是地球上几乎所有生命赖以生存和发展的基础。光合作用状态转换是光合膜在光环境变化条件下调节激发能在光系统I(PSI)和光系统II(PSII)间均衡分配的一种快速适应机制,通过PSII主要捕光天线(LHCII)在PSII和PSI之间的迁移和可逆结合,改变两个光系

光合作用光能捕获与能量传递的结构基础研究

光合作用作为地球上生物利用太阳能的重要反应,一直是科学研究关注的重点,是植物抗逆性研究、作物高产研究的热点。光合作用根据其反应阶段可以分为基于光能吸收传递转化的光反应和基于CO2同化等酶促过程的暗反应。光反应作为植物利用太阳能的原初反应,光能的吸收传递和转化主要发生在植物叶片或者藻类的类囊体膜上,由

新颖的结构实现发射光能高于激发材料的光

  加利福尼亚大学河边分校和德克萨斯大学奥斯汀分校的材料科学家证明,使用硅纳米晶体和特殊的有机分子精心设计的结构,可以实现发射光能高于激发材料的光。  这一结果发表在《Nature Chemistry》杂志上,使科学家们距离开发针对癌症的微创光动力疗法更近了一步。这一进展还可能催生用于太阳能转换,量

研究解析硅藻PSIFCPI超级复合物2.38埃分辨率的三维结构

  硅藻是海洋中的主要浮游藻类之一,在地球碳氧等元素循环中起重要作用。硅藻含有岩藻黄素、叶绿素c、硅甲藻黄素等与绿色光合生物不同的光合色素,具有特殊的光能捕获、能量传递和光保护机制。  中国科学院植物研究所光合膜蛋白结构生物学团队致力于光合膜蛋白三维结构和功能的研究,2019年,破解羽纹纲硅藻-三角

我国学者揭示蓝藻光系统I捕获光能和电子传递结构基础

  2月10日,国际学术期刊《自然-植物》(Nature Plants)在线发表了题为Structural basis for energy and electron transfer of the photosystem I–IsiA–flavodoxin supercomplex 的研究论文,该

这个团队在光合作用捕光复合物研究中取得进展!

  经过我们公众号iPlants的查阅,发现以中国科学院生物物理所常文瑞院士为学术带头人,柳振峰研究组、章新政研究组与常文瑞/李梅研究组合作的团队已经在光合作用的捕光复合物研究中取得一系列重大的进展,实属了不起!其中包括以下成果:  1.2004年3月18日,Nature以封面彩图的形式发表来自中国

假根羽藻重要光合膜蛋白超级复合物结构获解析

   日前,中国科学院院士、中科院植物研究所研究员匡廷云、研究员沈建仁带领的团队同济南大学、清华大学的科研人员合作,揭示了假根羽藻一个重要的光合膜蛋白超级复合物——光系统I捕光复合物I(PSI-LHCI)的3.49Å分辨率结构。该研究进一步完善了对光合生物进化过程中光系统结构变化趋势的理解,为人工模

天合光能与GE合作在日本建光伏电站

近日,天合光能与美国通用电气集团(GE)下属的通用能源金融服务事业部(以下简称“GE EFS”)合作投资了位于日本宫城县石卷市的一个14MW大型光伏地面电站,GE EFS将持有该项目85%的股权,双方公司将派代表组成管理委员会,共同参与电站项目的日常运营。天合光能全资子公司——天合光

光伏基础研究:KIT学者测量光能转换重要过程

  以光合作用为范例  光到可存储能量的转换过程可作为可持续能源供应的重要组成。这种转换过程数亿年来已被自然界通过光合作用加以利用,通过光照生成碳水化合物。在科研上,通过光催化对光转换为化学能的过程加速越来越得到重视。  光伏基础目前仅被粗略研究  对于直接将太阳光转换为电能的光伏领域,科研工作者也

水平偏振光与竖直偏振光能干涉吗

垂直偏振光通过45度偏振镜后,是否能通过水平偏振镜一束极化的并且垂直的偏振光透过一个与竖直方向成45度夹角的偏振镜,按照向量分解可以通过,但通过之后,偏振方向会不会变成45

天合光能与GE合作在日本建光伏电站

  近日,天合光能与美国通用电气集团(GE)下属的通用能源金融服务事业部(以下简称“GE EFS”)合作投资了位于日本宫城县石卷市的一个14MW大型光伏地面电站,GE EFS将持有该项目85%的股权,双方公司将派代表组成管理委员会,共同参与电站项目的日常运营。天合光能全资子公司——天合光能日本能源公

绿藻球怎么养绿藻球的生活环境

  绿藻球能适应广泛的水质、光度及温度变化,不追加肥料、不添加二氧化碳也可育成,具体的养殖 方法 有哪些呢?以下是由我整理关于绿藻球怎么养的内容,希望大家喜欢!  绿藻球的养殖方法  1.绿藻球为绿藻类中的淡水藻品种,可以用洁净的自来水养殖,大约一个星期左右更换一次清水,水温一定要保持25摄氏度一下

隋森芳团队等揭示硅藻光系统超级复合物冷冻电镜结构

  硅藻是海洋主要的浮游生物之一,贡献了地球上每年原初生产力的20%左右,且在生物地球化学循环中起着重要作用,这都与其光系统II(PhotosystemII,PSII)以及外周捕光天线的功能密切相关。不同于绿藻和高等植物,硅藻PSII的外周捕光天线是结合了岩藻黄素和叶绿素a/c的蛋白(Fucoxan

中外学者Nature:多重信息的传递者

  多巴胺是大脑中一种负责神经传导的物质,被称之为“脑部信息的传递者”。在最新研究研究中,来自德国马克斯•普朗克神经生物学研究所、中国科学院等机构的研究人员发现相似的多巴胺释放神经细胞可以在昆虫大脑中发挥不同作用,表明多巴胺传递了多种信息。相关论文发布在7月18日的《自然》杂志上。   领导这一研

无机生物混合人工光合系统用于食品生产

过光合作用利用二氧化碳、水和太阳光能生产农作物和食物是人类获取粮食的主要途径,但该过程非常低效,只有大约1%的太阳光能量被用于植物生长,转化为生物质能。近日,来自美国加州大学河滨分校和特拉华大学的研究团队在《Nature Food》上发表题为“A hybrid inorganic-biologica

Nature:光,擦除小鼠记忆

  发表于国际著名杂志Nature上的一项研究报告中,来自美国和日本的多位科学家通过联合研究开发了一种新型设备,该设备可以改变小鼠大脑中的神经树突棘,而神经树突棘可以被促进记忆形成的事件在天然状态下首次修饰,因此该研究表明,通过改变大脑中的神经树突棘或许就可以促进大脑中已经形成的记忆被遗忘。  作为

藻类水下光合作用的蛋白结构和功能破解了

  光合作用为生物的生存提供了能量和氧气,为利用不同环境下的光能,光合生物进化出了不同的色素分子和色素结合蛋白。硅藻是一种丰富和重要的水生光合真核生物,占地球总原初生产力的20%。硅藻含有岩藻黄素/叶绿素结合膜蛋白(FCPs),该色素蛋白使硅藻具有独特的光捕获和光保护及快速适应光强度变化的能力。  

隋森芳等揭示硅藻光系统II捕光天线超级复合体结构

硅藻是海洋主要的浮游生物之一,贡献了地球上每年原初生产力的20%左右,且在生物地球化学循环中起着重要作用,这都与其光系统II(PhotosystemII,PSII)以及外周捕光天线的功能密切相关。不同于绿藻和高等植物,硅藻PSII的外周捕光天线是结合了岩藻黄素和叶绿素a/c的蛋白(Fucoxanth

研究揭示小立碗藓独特PSI超分子复合物的精细结构

  绿色谱系植物从水生环境向陆生环境过渡的过程中,苔藓植物作为首次登陆的植物类群脱颖而出。苔藓植物包括苔类、藓类和角苔类。藓类中的小立碗藓(Physcomitrium patens,P. patens)作为重要的模式植物被广泛应用于各研究领域。  光系统I(Photosystem I,PSI)和光系

绿藻门、轮藻门、红藻门、褐藻门鉴定——绿藻门鉴定

实验方法原理实验材料绿藻试剂、试剂盒I-Kl 溶液浓 KOH 溶液0.1%亚甲基蓝溶液2%-3%盐酸(或乙酸)溶液仪器、耗材显微镜摄子解剖针载玻片盖玻片滴管培养皿吸水纸实验步骤绿藻门 Chlorophyta( 图 2-19-1)绿藻门是藻类植物中种类最多的一大类群,分布极广,以淡水最多。其所含色素、

Nature子刊:-偏振光结构光显微技术(pSIM)

  偏振是光作为电磁波的基本物理属性之一。偏振特性在光场调控、显微成像、量子光学、立体显示等领域得到了广泛的应用。在生物学中,通过偏振成像测量荧光团的偶极子方向,可以揭示靶蛋白的取向。超分辨显微技术虽然能够突破光的衍射极限,实现百纳米尺度的高分辨率成像,但是由于无法获知生物分子的取向性,在应用中受到

高分辨率冷冻电镜首次解析超级复合物结构

  在国家重点研发计划“蛋白质机器与生命过程调控”重点专项的支持下,“光合作用重要蛋白质机器的结构、功能与调控”和“蛋白质机器的高分辨率冷冻电镜前沿技术及应用”项目联合攻关,取得突破进展,发现了植物的光适应与捕光调节新机制。图片源自网络   光合作用为世界上几乎所有的生命体提供赖以生存的物质和能量,

天合光能计划向常州天合光伏工业园投资8亿

  天合光能宣布,计划在未来三年内向常州天合光伏工业园投资8亿美元。天合光能计划在2011年到2013年期间,将这笔资金用于扩大该公司产能。   26日出席在常州行政中心仪式的江苏省副省长张卫国与常州市委书记范燕青共同宣布这项投资决定。   该公司还宣布,旗下所属的合资子公司――常州天合太

天合光能光伏系统检测中心获得国家CNAS实验室认可资格

  近日,天合光能光伏系统检测中心获得中国合格评定认可委员会CNAS实验室认可资格。这是继2010年光伏产品检测中心获得光伏组件领域的实验室认可后,天合光能在系统检测领域也获得了国家级评审机构的认可。至此,天合光能成为光伏制造领域首家涵盖光伏全领域实验室认可的企业,体现了国家评审机构对天合光能检测能

匡廷云院士团队揭示硅藻特有捕光天线蛋白复合体结构

  硅藻是海洋中最“成功”的浮游光合生物之一,它们通过光合作用贡献了地球上每年约20%的原初生产力,且在地球的元素循环和气候变化中发挥重要作用,这与硅藻特有的捕光天线蛋白“岩藻黄素-叶绿素a/c蛋白复合体”(Fucoxanthin chlorophyll a/c protein,FCP)的功能密切相